Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Biol Trace Elem Res ; 201(11): 5468-5480, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36813937

RESUMO

Yerba mate (Ilex paraguariensis St. Hill.) has shown a relatively high capacity for micronutrient absorption and could be a candidate for biofortification and combating a lack of micronutrients. To further evaluate the accumulation capacity of Ni and Zn, yerba mate clonal seedlings were grown in containers under five rates of Ni or Zn (0, 0.5, 2, 10, and 40 mg kg-1) with three soils originating from different parent material (basalt, rhyodacite, and sandstone). After 10 months, plants were harvested, divided into component parts (leaves, branches, and roots), and evaluated for 12 elements. The use of Zn and Ni enhanced seedling growth under rhyodacite- and sandstone-derived soils at the first application rate. Application of Zn and Ni resulted in linear increases based on Mehlich I extractions; recovery of Ni was smaller than Zn. Root Ni concentration increased from approximately 20 to 1000 mg kg-1 in rhyodacite-derived soil and from 20 to 400 mg kg-1 in basalt- and sandstone-derived soils; respective increases in leaf tissue were ~ 3 to 15 mg kg-1 and 3 to 10 mg kg-1. For Zn, the maximum obtained values were close to 2000, 1000, and 800 mg kg-1 for roots, leaves, and branches for rhyodacite-derived soils, respectively. Corresponding values for basalt- and sandstone-derived soils were 500, 400, and 300 mg kg-1, respectively. Although yerba mate is not a hyperaccumulator, this species has a relatively high capacity to accumulate Ni and Zn in young tissue with the highest accumulation occurring in roots. Yerba mate showed high potential to be used in biofortification programs for Zn.


Assuntos
Ilex paraguariensis , Zinco , Níquel , Solo , Micronutrientes , Extratos Vegetais
2.
Biol Trace Elem Res ; 200(3): 1455-1463, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33929693

RESUMO

Consumption of yerba mate occurs mostly in the form of hot infusion (chimarrão). Water solubility of elements found in commercialized yerba mate is needed to establish nutritional value and risks associated with potentially toxic elements. In this study, yerba mate products marketed in three Brazilian states (Paraná, Santa Catarina, and Rio Grande do Sul) for chimarrão were analyzed. Total (dry product) and hot water-soluble concentrations of Al, As, B, Ba, Ca, Cd, Co, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Ni, P, Pb, Rb, S, Se, Sr, Ti, V, and Zn were determined by inductively coupled plasma mass spectroscopy (ICP-MS). Total concentrations of the ten top elements followed the order of K>Ca>Mg>Mn>P>S>Al>Fe>Ba>Zn. The most soluble elements were B, Cs, Ni, Rb, and K, with values greater than 80%. The lowest water-soluble elements were V, Fe, and Ti (values <10%), followed by Ba, Cd, Al, As, Sr, Ca, and Pb with solubility between 10 and 20%. Although total Cd levels in yerba mate products were often above those permitted by South America legislation, estimated daily consumption intake indicated no risk associated with the chimarrão beverage. Manganese was the micronutrient with the highest total and soluble levels in yerba mate, which surpassed recommended daily intake values when considering a consumption amount of 50 g day-1 of yerba mate as chimarrão. The consumption of yerba mate is safe and contributes to intake of nutrients. The Cd and Pb reference values of yerba mate products sold in South America should be revised.


Assuntos
Ilex paraguariensis , Oligoelementos , Bebidas/análise , Brasil , Medição de Risco , Oligoelementos/análise
3.
Rev. bras. zootec ; 49: e20190214, 2020. tab, graf
Artigo em Inglês | VETINDEX | ID: biblio-1443581

RESUMO

Our aim was to assess the mineral composition of corn silages produced in four states of Brazil: Goiás, Minas Gerais, Paraná, and Santa Catarina. In total, seventy-three samples were analyzed. Total element content was extracted by HNO3 and H2 O2 microwave-assisted digestion, and inductively coupled plasma-mass spectrometry (ICP-MS) was used to determine concentration. Of the 31 elements analyzed (Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cs, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Rb, S, Se, Sr, Ti, Tl, U, V, and Zn), 21 had concentrations above equipment detection limits. No elements reached the maximum tolerable concentration, but concentrations of Ca (0.14-0.15%), Cu (3.4-5.6 mg kg−1), P (0.13-0.16%), S (0.06-0.08%), and Zn (13-19 mg kg−1) were below the adequate concentration for good nutritional balance. The strong and consistent correlation observed between Fe and Ti in silage samples indicated contamination by soil. Mean concentrations of Cu, Mn, Mo, P, S, and Zn were different among states, and canonic analyses successfully discriminate samples according to their state of origin. Minerals from corn silage should be considered when formulating balanced cattle diets. To ensure silage quality, farmers must adopt strategies that reduce contamination by soil during the ensiling process.(AU)


Assuntos
Silagem/análise , Zea mays/química , Minerais/toxicidade , Brasil
4.
Environ Monit Assess ; 192(1): 46, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844991

RESUMO

A by-product of industrialization and population growth, automobile scrap yards are a potential source of metal contamination in soil. This study evaluated the use of portable X-ray fluorescence (pXRF) spectrometry and magnetic susceptibility (χ) analysis in assessing metal soil contamination in scrap yards located in Brazil. Five automobile scrap yards were selected in Curitiba, Paraná State (CB1, CB2, and CB3) and Lavras, Minas Gerais State (LV1 and LV2). By evaluating metal concentrations and geoaccumulation index values, we verified moderate Cu, Pb, and Zr contamination and moderate to high Zn contamination, primarily in the topsoil (0-10 cm). Soil Zn concentrations in automobile scrap yards were on average four times higher than in reference soils, suggesting that galvanized automobile parts may be the primary source of this soil contaminant. Although other elements (i.e., As, Cr, Fe, Nb, Ni, and Y) were slightly increased compared to reference values in one or more soils, concentrations did not constitute contamination. Automobile scrap yard topsoil had higher χ values (5.8 to 52.9 × 10-7 m3 kg-1) at low frequency (χlf) compared to reference soil (3.6 to 7.5 × 10-7 m3 kg-1). The highest values of χlf occurred in LV soils, which also represented the highest Zn contamination. Magnetic multidomain characteristics (percent frequency-dependent susceptibility between 2 and 10) indicated magnetic particle contributions of anthropogenic origin. The use of pXRF and χlf as non-destructive techniques displays potential for identifying soil contamination in automobile scrap yards.


Assuntos
Automóveis , Monitoramento Ambiental , Poluição Ambiental/estatística & dados numéricos , Poluentes do Solo/análise , Resíduos , Brasil , Meio Ambiente , Poluição Ambiental/análise , Fenômenos Magnéticos , Metais/análise , Metais Pesados/análise , Solo/química , Espectrometria por Raios X/métodos , Instalações de Eliminação de Resíduos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA