Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Prep Biochem Biotechnol ; 52(9): 1051-1059, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35100517

RESUMO

The production of 2,3-butanediol (2,3-BDO), a dialcohol of great interest for the food, chemical, and pharmaceutical industry, through the fermentation of biomass, is a sustainable process strategic position for countries with abundant biomass generated by the agribusiness. However, the downstream process of 2,3-BDO is onerous due to the complexity of fermentation broth and the physical-chemical characteristics of the 2,3-BDO. This study investigated the feasibility of 2,3-BDO extraction from model aqueous solutions using aqueous two-phase systems (ATPS). A central composite rotational design (CCRD) was employed to evaluate different ATPS compositions and the influences on the 2,3-BDO recovery and partition coefficient. The polyethylene glycol (PEG) and different concentrations of sodium citrate, ammonium sulfate, and potassium phosphate were investigated. The concentration of salt and PEG in the ATPS was identified as the most significant factors influencing the recovery and partition coefficient of 2,3-BDO. The recovery of 2,3-BDO reached 94.5% and was obtained when the system was composed of 36.22% (w/w) of PEG 4000 and 4.47% (w/w) of potassium phosphate. The results indicate that ATPS based on PEG-salt has a high potential for industrial application, using mild conditions and a simple process for recovering and purifying the 2,3-BDO produced from microbiological synthesis.


Assuntos
Cloreto de Sódio , Água , Sulfato de Amônio , Butileno Glicóis , Fosfatos , Polietilenoglicóis/química , Compostos de Potássio , Cloreto de Sódio/química , Citrato de Sódio , Água/química
2.
Membranes (Basel) ; 10(9)2020 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-32961881

RESUMO

The mussel-inspired method has been investigated to modify commercial ultrafiltration membranes to induce antifouling characteristics. Such features are essential to improve the feasibility of using membrane processes in protein recovery from waste streams, wastewater treatment, and reuse. However, some issues still need to be clarified, such as the influence of membrane pore size and the polymer concentration used in modifying the solution. The aim of the present work is to study a one-step deposition of dopamine (DA) and polyethyleneimine (PEI) on ultrafiltration membrane surfaces. The effects of different membrane molecular weight cut-offs (MWCO, 20, 30, and 50 kDa) and DA/PEI concentrations on membrane performance were assessed by surface characterization (FTIR, AFM, zeta potential, contact angle, protein adsorption) and permeation of protein solution. Results indicate that larger MWCO membranes (50 kDa) are most benefited by modification using DA and PEI. Moreover, PEI is primarily responsible for improving membrane performance in protein solution filtration. The membrane modified with 0.5:4.0 mg mL-1 (DA: PEI) presented a better performance in protein solution filtration, with only 15% of permeate flux drop after 2 h of filtration. The modified membrane can thus be potentially applied to the recovery of proteins from waste streams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA