Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 6(4)2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33348541

RESUMO

Diversity of species within Aspergillus niger clade, currently represented by A. niger sensu stricto and A. welwitshiae, was investigated combining three-locus gene sequences, Random Amplified Polymorphic DNA, secondary metabolites profile and morphology. Firstly, approximately 700 accessions belonging to this clade were investigated using calmodulin gene sequences. Based on these sequences, eight haplotypes were clearly identified as A. niger (n = 247) and 17 as A. welwitschiae (n = 403). However, calmodulin sequences did not provide definitive species identities for six haplotypes. To elucidate the taxonomic position of these haplotypes, two other loci, part of the beta-tubulin gene and part of the RNA polymerase II gene, were sequenced and used to perform an analysis of Genealogical Concordance Phylogenetic Species Recognition. This analysis enabled the recognition of two new phylogenetic species. One of the new phylogenetic species showed morphological and chemical distinguishable features in comparison to the known species A. welwitschiae and A. niger. This species is illustrated and described as Aspergillus vinaceus sp. nov. In contrast to A. niger and A. welwitschiae, A. vinaceus strains produced asperazine, but none of them were found to produce ochratoxin A and/or fumonisins. Sclerotium production on laboratory media, which does not occur in strains of A. niger and A. welwitschiae, and strictly sclerotium-associated secondary metabolites (14-Epi-hydroxy-10,23-dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydroaflavinine; 10,23-Dihydro-24,25-dehydro-21-oxo-aflavinine) were found in A. vinaceus. The strain type of A. vinaceus sp. nov. is ITAL 47,456 (T) (=IBT 35556).

2.
Food Res Int ; 121: 940-946, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31108829

RESUMO

Dried leaves and stems of Ilex paraguariensis St. Hil. (yerba mate) are used to make a popular beverage in some countries of South America, commonly known as "chimarrão". The present study was designed to evaluate the occurrence of toxigenic Aspergillus in yerba mate in order to define the mycotoxin risk associated with this foodstuff. All samples tested were positive for fungal contamination, and the fungal load per sample ranged from 2.0 × 102 to 1.6 × 104 CFU/g. Aspergillus section Nigri was found in all samples and represented 76.5% of the total fungi isolated. Aspergillus section Circumdati, Aspergillus section Flavi and Aspergillus section Cremei were found at low frequencies. Thirteen different Aspergillus species were identified. The most common species found was A. luchuensis, which does not produce any harmful toxin for humans. A. niger, A. welwitschiae, A. flavus and A. novoparasiticus, all potentially toxigenic species, were found only in small quantities. The A. niger and A. welwitschiae strains were cultured to test for ochratoxin A and fumonisin B2 production. Only one strain producing ochratoxin A was found, but approximately 29% of the strains were positive for fumonisin B2. The A. flavus and A. novoparasiticus strains were tested for aflatoxins production, and 63% were positive. A. pallidofulvus, recently assigned to A. section Circumdati, was reported for the first time in herbs. All A. pallidofulvus strains analyzed in this study were negative for ochratoxin A production. In conclusion, A. section Nigri occurs with high frequency in yerba mate, and A. luchuensis is the predominant species. Although toxigenic species were found in this herb, the incidence was low.


Assuntos
Aspergillus/isolamento & purificação , Bebidas/análise , DNA Fúngico/isolamento & purificação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Ilex paraguariensis/química , Ilex paraguariensis/microbiologia , Aflatoxinas/análise , Aspergillus/classificação , Aspergillus/metabolismo , Bebidas/microbiologia , Brasil , Contagem de Colônia Microbiana , DNA Fúngico/genética , Fumonisinas/análise , Micotoxinas/análise , Ocratoxinas/análise
3.
BMC Genomics ; 19(1): 189, 2018 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-29523080

RESUMO

BACKGROUND: Aspergillus arachidicola is an aflatoxigenic fungal species, first isolated from the leaves of a wild peanut species native to Argentina. It has since been reported in maize, Brazil nut and human sputum samples. This aflatoxigenic species is capable of secreting both B and G aflatoxins, similar to A. parasiticus and A. nomius. It has other characteristics that may result in its misidentification as one of several other section Flavi species. This study offers a preliminary analysis of the A. arachidicola genome. RESULTS: In this study we sequenced the genome of the A. arachidicola type strain (CBS 117610) and found its genome size to be 38.9 Mb, and its number of predicted genes to be 12,091, which are values comparable to those in other sequenced Aspergilli. A comparison of 57 known Aspergillus secondary metabolite gene clusters, among closely-related aflatoxigenic species, revealed nearly half were predicted to exist in the type strain of A. arachidicola. Of its predicted genes, 691 were identified as unique to the species and 60% were assigned Gene Ontology terms using BLAST2GO. Phylogenomic inference shows CBS 117610 sharing a most recent common ancestor with A. parasiticus. Finally, BLAST query of A. flavus mating-type idiomorph sequences to this strain revealed the presence of a single mating-type (MAT1-1) idiomorph. CONCLUSIONS: Based on A. arachidicola morphological, genetic and chemotype similarities with A. flavus and A. parasiticus, sequencing the genome of A. arachidicola will contribute to our understanding of the evolutionary relatedness among aflatoxigenic fungi.


Assuntos
Aflatoxinas/metabolismo , Aspergillus/genética , Genoma Fúngico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Transcriptoma , Arachis/microbiologia , Aspergillus/metabolismo , Proteínas Fúngicas/genética , Perfilação da Expressão Gênica , Ontologia Genética , Anotação de Sequência Molecular , Doenças das Plantas/microbiologia
4.
Food Chem Toxicol ; 98(Pt B): 189-194, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27717802

RESUMO

Patulin (PAT) is a secondary metabolite mainly produced by Aspergillus and Penicillium that is frequently found contaminating apples and rotten fruits. Patulin can be transformed in potencially less toxic compounds such as ascladiol (ASC). Toxic effects of patulin were described in rats and in in vitro models, however concerning ascladiol, data are restricted to metabolic pathways. The aim of the present study was to evaluate the effects of different concentrations of PAT (10 µM, 30 µM, 100 µM) and ASC (30 µM, 100 µM) on intestinal tissue using the jejunal explant model. Explants from pigs were exposed for 4 h to PAT and ASC and after this period were processed for histological, morphometrical and immunohistochemical analysis. Mild histological changes were observed in jejunal explants exposed to PAT and ASC, however no significant difference in the lesional score or villi height was observed between the PAT/ASC-groups and the control. Also, explants exposed to 100 µM of PAT showed a significant decrease in goblet cells density and a significant increase in cell apoptosis. These results indicate that high levels of patulin can induce mild toxic effects on intestinal mucosa whereas ascladiol apparently is non-toxic to intestinal tissue.


Assuntos
Apoptose/efeitos dos fármacos , Furanos/farmacologia , Mucosa Intestinal/patologia , Jejuno/patologia , Patulina/farmacologia , Animais , Imuno-Histoquímica , Mucosa Intestinal/efeitos dos fármacos , Jejuno/efeitos dos fármacos , Masculino , Ratos , Suínos , Técnicas de Cultura de Tecidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA