Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
2.
Lancet Reg Health Am ; 16: 100366, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36185968

RESUMO

Background: COVID-19 vaccines have proven safe and efficacious in reducing severe illness and death. Cuban protein subunit vaccine Abdala has shown safety, tolerability and efficacy (92·3% [95% CI: 85·7‒95·8]) against SARS-CoV-2 in clinical trials. This study aimed to estimate Abdala's real-world vaccine effectiveness (VE). Methods: This retrospective cohort study in Havana analyzed Cuban Ministry of Public Health databases (May 12-August 31, 2021) to assess VE in preventing severe illness and death from COVID-19 (primary outcomes). Cox models accounting for time-varying vaccination status and adjusting by demographics were used to estimate hazard ratios. A subgroup analysis by age group and a sensitivity analysis including a subgroup of tested persons (qRT-PCR) were conducted. Daily cases and deaths were modelled accounting for different VE. Findings: The study included 1 355 638 persons (Mean age: 49·5 years [SD: 18·2]; 704 932 female [52·0%]; ethnicity data unavailable): 1 324 vaccinated (partially/fully) and 31 433 unvaccinated. Estimated VE against severe illness was 93·3% (95% CI: 92·1-94·3) in partially- vaccinated and 98·2% (95% CI: 97·9-98·5) in fully-vaccinated and against death was 94·1% (95% CI: 92·5-95·4) in partially-vaccinated and 98·7% (95% CI: 98·3-99·0) in fully-vaccinated. VE exceeded 92·0% in all age groups. Daily cases and deaths during the study period corresponded to a VE above 90%, as predicted by models. Interpretation: The Cuban Abdala protein subunit vaccine was highly effective in preventing severe illness and death from COVID-19 under real-life conditions. Funding: Cuban Ministry of Public Health. Genetic Engineering and Biotechnology Centre.

3.
Front Plant Sci ; 11: 562, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32528487

RESUMO

Fungal diseases lead to significant losses in soybean yields and a decline in seed quality; such is the case of the Asian soybean rust and anthracnose caused by Phakopsora pachyrhizi and Colletotrichum truncatum, respectively. Currently, the development of transgenic plants carrying antifungal defensins offers an alternative for plant protection against pathogens. This paper shows the production of transgenic soybean plants expressing the NmDef02 defensin gene using the biolistic delivery system, in an attempt to improve resistance against diseases and reduce the need for chemicals. Transgenic lines were assessed in field conditions under the natural infections of P. pachyrhizi and C. truncatum. The constitutive expression of the NmDef02 gene in transgenic soybean plants was shown to enhance resistance against these important plant pathogens. The quantification of the P. pachyrhizi biomass in infected soybean leaves revealed significant differences between transgenic lines and the non-transgenic control. In certain transgenic lines there was a strong reduction of fungal biomass, revealing a less severe disease. Integration and expression of the transgenes were confirmed by PCR, Southern blot, and qRT-PCR, where the Def1 line showed a higher relative expression of defensin. It was also found that the expression of the NmDef02 defensin gene in plants of the Def1 line did not have a negative effect on the nodulation induced by Bradyrhizobium japonicum. These results indicate that transgenic soybean plants expressing the NmDef02 defensin gene have a substantially enhanced resistance to economically important diseases, providing a sound environmental approach for decreasing yield losses and lowering the burden of chemicals in agriculture.

4.
Transgenic Res ; 29(2): 171-186, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31919795

RESUMO

The expression of recombinant proteins in plants is a valuable alternative to bioreactors using mammalian cell systems. Ease of scaling, and their inability to host human pathogens, enhance the use of plants to generate complex therapeutic products such as monoclonal antibodies. However, stably transformed plants expressing antibodies normally have a poor accumulation of these proteins that probably arise from the negative positional effects of their flanking chromatin. The induction of boundaries between the transgenes and the surrounding DNA using matrix attachment regions (MAR) and insulator elements may minimize these effects. With the PHB-01 antibody as a model, we demonstrated that the insertion of DNA elements, the TM2 (MAR) and M4 insulator, flanking the transcriptional cassettes that encode the light and heavy chains of the PHB-01 antibody, increased the protein accumulation that remained stable in the first plant progeny. The M4 insulator had a stronger effect than the TM2, with over a twofold increase compared to the standard construction. This effect was probably associated with an enhancer-promoter interference. Moreover, transgenic plants harboring two transcriptional units encoding for the PHB-01 heavy chain combined with both TM2 and M4 elements enhanced the accumulation of the antibody. In summary, the M4 combined with a double transcriptional unit of the heavy chain may be a suitable strategy for potentiating PHB-01 production in tobacco plants.


Assuntos
Anticorpos/metabolismo , Cadeias Pesadas de Imunoglobulinas/metabolismo , Elementos Isolantes , Regiões de Interação com a Matriz/genética , Nicotiana/genética , Proteínas Recombinantes/metabolismo , Transgenes/genética , Anticorpos/genética , Regulação da Expressão Gênica de Plantas , Cadeias Pesadas de Imunoglobulinas/genética , Cadeias Leves de Imunoglobulina/genética , Cadeias Leves de Imunoglobulina/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Proibitinas , Regiões Promotoras Genéticas , Proteínas Recombinantes/genética , Nicotiana/crescimento & desenvolvimento
5.
PLoS One ; 11(1): e0146223, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26731660

RESUMO

Huanglongbing (HLB) constitutes the most destructive disease of citrus worldwide, yet no established efficient management measures exist for it. Brassinosteroids, a family of plant steroidal compounds, are essential for plant growth, development and stress tolerance. As a possible control strategy for HLB, epibrassinolide was applied to as a foliar spray to citrus plants infected with the causal agent of HLB, 'Candidatus Liberibacter asiaticus'. The bacterial titers were reduced after treatment with epibrassinolide under both greenhouse and field conditions but were stronger in the greenhouse. Known defense genes were induced in leaves by epibrassinolide. With the SuperSAGE technology combined with next generation sequencing, induction of genes known to be associated with defense response to bacteria and hormone transduction pathways were identified. The results demonstrate that epibrassinolide may provide a useful tool for the management of HLB.


Assuntos
Brassinosteroides/farmacologia , Citrus/microbiologia , Doenças das Plantas/microbiologia , Rhizobiaceae/efeitos dos fármacos , Citrus/efeitos dos fármacos , Folhas de Planta/microbiologia
6.
Plant Biotechnol J ; 11(1): 53-65, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23046448

RESUMO

A broad variety of foreign genes can be expressed in transgenic plants, which offer the opportunity for large-scale production of pharmaceutical proteins, such as therapeutic antibodies. Nimotuzumab is a humanized anti-epidermal growth factor receptor (EGFR) recombinant IgG1 antibody approved in different countries for the treatment of head and neck squamous cell carcinoma, paediatric and adult glioma, and nasopharyngeal and oesophageal cancers. Because the antitumour mechanism of nimotuzumab is mainly attributed to its ability to interrupt the signal transduction cascade triggered by EGF/EGFR interaction, we have hypothesized that an aglycosylated form of this antibody, produced by mutating the N(297) position in the IgG(1) Fc region gene, would have similar biochemical and biological properties as the mammalian-cell-produced glycosylated counterpart. In this paper, we report the production and characterization of an aglycosylated form of nimotuzumab in transgenic tobacco plants. The comparison of the plantibody and nimotuzumab in terms of recognition of human EGFR, effect on tyrosine phosphorylation and proliferation in cells in response to EGF, competition with radiolabelled EGF for EGFR, affinity measurements of Fab fragments, pharmacokinetic and biodistribution behaviours in rats and antitumour effects in nude mice bearing human A431 tumours showed that both antibody forms have very similar in vitro and in vivo properties. Our results support the idea that the production of aglycosylated forms of some therapeutic antibodies in transgenic plants is a feasible approach when facing scaling strategies for anticancer immunoglobulins.


Assuntos
Anticorpos Monoclonais Humanizados/biossíntese , Anticorpos Monoclonais Humanizados/farmacologia , Receptores ErbB/antagonistas & inibidores , Imunoglobulinas/biossíntese , Nicotiana/genética , Nicotiana/metabolismo , Planticorpos/farmacologia , Animais , Antineoplásicos/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Nus , Agricultura Molecular/métodos , Fosforilação/efeitos dos fármacos , Planticorpos/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ratos , Ratos Wistar , Proteínas Recombinantes , Tirosina/metabolismo
7.
Mol Plant Pathol ; 12(3): 209-16, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21355993

RESUMO

Rhizoctonia solani Kühn is a soil-borne fungal pathogen that causes disease in a wide range of plants worldwide. Strains of the fungus are traditionally grouped into genetically isolated anastomosis groups (AGs) based on hyphal anastomosis reactions. This article summarizes aspects related to the infection process, colonization of the host and molecular mechanisms employed by tobacco plants in resistance against R. solani diseases. TAXONOMY: Teleomorph: Thanatephorus cucumeris (Frank) Donk; anamorph: Rhizoctonia solani Kühn; Kingdom Fungi; Phylum Basidiomycota; Class Agaricomycetes; Order Cantharellales; Family Ceratobasidiaceae; genus Thanatephorus. IDENTIFICATION: Somatic hyphae in culture and hyphae colonizing a substrate or host are first hyaline, then buff to dark brown in colour when aging. Hyphae tend to form at right angles at branching points that are usually constricted. Cells lack clamp connections, but possess a complex dolipore septum with continuous parenthesomes and are multinucleate. Hyphae are variable in size, ranging from 3 to 17 µm in diameter. Although the fungus does not produce any conidial structure, ellipsoid to globose, barrel-shaped cells, named monilioid cells, 10-20 µm wide, can be produced in chains and can give rise to sclerotia. Sclerotia are irregularly shaped, up to 8-10 mm in diameter and light to dark brown in colour. DISEASE SYMPTOMS: Symptoms in tobacco depend on AG as well as on the tissue being colonized. Rhizoctonia solani AG-2-2 and AG-3 infect tobacco seedlings and cause damping off and stem rot. Rhizoctonia solani AG-3 causes 'sore shin' and 'target spot' in mature tobacco plants. In general, water-soaked lesions start on leaves and extend up the stem. Stem lesions vary in colour from brown to black. During late stages, diseased leaves are easily separated from the plant because of severe wilting. In seed beds, disease areas are typically in the form of circular to irregular patches of poorly growing, yellowish and/or stunted seedlings. RESISTANCE: Knowledge is scarce regarding the mechanisms associated with resistance to R. solani in tobacco. However, recent evidence suggests a complex response that involves several constitutive factors, as well as induced barriers controlled by multiple defence pathways. MANAGEMENT: This fungus can survive for many years in soil as mycelium, and also by producing sclerotia, which makes the management of the disease using conventional means very difficult. Integrated pest management has been most successful; it includes timely fungicide applications, crop rotation and attention to soil moisture levels. Recent developments in biocontrol may provide other tools to control R. solani in tobacco.


Assuntos
Nicotiana/microbiologia , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Raízes de Plantas/microbiologia , Rhizoctonia/fisiologia , Imunidade Inata/imunologia , Doenças das Plantas/imunologia , Rhizoctonia/classificação
8.
Plant Biotechnol J ; 8(6): 678-90, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20626828

RESUMO

Plant defensins are small cysteine-rich peptides that inhibit the growth of a broad range of microbes. In this article, we describe NmDef02, a novel cDNA encoding a putative defensin isolated from Nicotiana megalosiphon upon inoculation with the tobacco blue mould pathogen Peronospora hyoscyami f.sp. tabacina. NmDef02 was heterologously expressed in the yeast Pichia pastoris, and the purified recombinant protein was found to display antimicrobial activity in vitro against important plant pathogens. Constitutive expression of NmDef02 gene in transgenic tobacco and potato plants enhanced resistance against various plant microbial pathogens, including the oomycete Phytophthora infestans, causal agent of the economically important potato late blight disease, under greenhouse and field conditions.


Assuntos
Defensinas/genética , Imunidade Inata , Nicotiana/genética , Doenças das Plantas/genética , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Dados de Sequência Molecular , Peronospora , Phytophthora , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Solanum tuberosum/genética , Solanum tuberosum/imunologia , Nicotiana/imunologia
9.
Mol Plant Pathol ; 11(1): 13-8, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20078772

RESUMO

Blue mould [Peronospora hyoscyami f. sp. tabacina (Adam) Skalicky 1964] is one of the most important foliar diseases of tobacco that causes significant losses in the Americas, south-eastern Europe and the Middle East. This review summarizes the current knowledge of the mechanisms employed by this oomycete pathogen to colonize its host, with emphasis on molecular aspects of pathogenicity. In addition, key biochemical and molecular mechanisms involved in tobacco resistance to blue mould are discussed. TAXONOMY: Kingdom: Chromista (Straminipila); Phylum: Heterokontophyta; Class: Oomycete; Order: Peronosporales; Family: Peronosporaceae; Genus: Peronospora; Species: Peronospora hyoscyami f. sp. tabacina. DISEASE SYMPTOMS: The pathogen typically causes localized lesions on tobacco leaves that appear as single, or groups of, yellow spots that often coalesce to form light-brown necrotic areas. Some of the leaves exhibit grey to bluish downy mould on their lower surfaces. Diseased leaves can become twisted, such that the lower surfaces turn upwards. In such cases, the bluish colour of the diseased plants becomes quite conspicuous, especially under moist conditions when sporulation is abundant. Hence the name of the disease: tobacco blue mould. INFECTION PROCESS: The pathogen develops haustoria within plant cells that are thought to establish the transfer of nutrients from the host cell, and may also act in the delivery of effector proteins during infection. RESISTANCE: Several defence responses have been reported to occur in the Nicotiana tabacum-P. hyoscyami f. sp. tabacina interaction. These include the induction of pathogenesis-related genes, and a correlated increase in the activities of typical pathogenesis-related proteins, such as peroxidases, chitinases, beta-1,3-glucanases and lipoxygenases. Systemic acquired resistance is one of the best characterized tobacco defence responses activated on pathogen infection.


Assuntos
Nicotiana/parasitologia , Peronospora/patogenicidade , Doenças das Plantas , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Nicotiana/imunologia
10.
Gene ; 452(2): 54-62, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20004236

RESUMO

To identify Nicotiana tabacum genes involved in resistance and susceptibility to Rhizoctonia solani, suppression subtractive hybridization was used to generate a cDNA library from transcripts that are differentially expressed during a compatible and incompatible interaction. This allowed the isolation of a protein kinase cDNA that was down-regulated during a compatible and up-regulated during an incompatible interaction. Quantitative RT-PCR analysis of this gene confirmed the differential expression patterns between the compatible and incompatible interactions. Over-expression of this gene in tobacco enhanced the resistance to damping-off produced by an aggressive R. solani strain. Furthermore, silencing of this protein kinase gene reduced the resistance to a non-aggressive R. solani strain. A set of reported tobacco-resistant genes were also evaluated in tobacco plants over-expressing and silencing the protein kinase cDNA. Several genes previously associated with resistance in tobacco, like manganese superoxide dismutase, Hsr203J, chitinases and phenylalanine ammonia-lyase, were up-regulated in tobacco plants over-expressing the protein kinase cDNA. Potentially, the protein kinase gene could be used to engineer resistance to R. solani in tobacco cultivars susceptible to this important pathogen.


Assuntos
Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Nicotiana/genética , Doenças das Plantas/genética , Proteínas Quinases/genética , Rhizoctonia/fisiologia , Sequência de Aminoácidos , Biomassa , DNA Complementar/genética , Dados de Sequência Molecular , Doenças das Plantas/microbiologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Alinhamento de Sequência , Nicotiana/enzimologia , Nicotiana/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA