Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39090833

RESUMO

INTRODUCTION: Gastric cancer (GC) is one of the most lethal malignancies worldwide. Helicobacter pylori is the primary cause of GC; therefore, its eradication reduces the risk of developing this neoplasia. There is extensive evidence regarding quadruple therapy with relevance to the European population. However, in Latin America, data are scarce. Furthermore, there is limited information about the eradication rates achieved by antibiotic schemes in European and Latin American populations. OBJECTIVE: To compare the effectiveness of standard triple therapy (STT), quadruple concomitant therapy (QCT), and bismuth quadruple therapy (QBT) in six centers in Europe and Latin America. METHODS: A retrospective study was carried out based on the LEGACy registry from 2017 to 2022. Data from adult patients recruited in Portugal, Spain, Chile, Mexico, and Paraguay with confirmed H. pylori infection who received eradication therapy and confirmatory tests at least 1 month apart were included. Treatment success by each scheme was compared using a mixed multilevel Poisson regression, adjusting for patient sex and age, together with country-specific variables, including prevalence of H. pylori antibiotic resistance (clarithromycin, metronidazole, and amoxicillin), and CYP2C19 polymorphisms. RESULTS: 772 patients were incorporated (64.64% females; mean age of 52.93 years). The total H. pylori eradication rates were 75.20% (255/339) with STT, 88.70% (159/178) with QCT, and 91.30% (191/209) with QBT. Both quadruple therapies (QCT-QBT) showed significantly higher eradication rates compared with STT, with an adjusted incidence risk ratio (IRR) of 1.25 (p: <0.05); and 1.24 (p: <0.05), respectively. The antibiotic-resistance prevalence by country, but not the prevalence of CYP2C19 polymorphism, showed a statistically significant impact on eradication success. CONCLUSIONS: Both QCT and QBT are superior to STT for H. pylori eradication when adjusted for country-specific antibiotic resistance and CYP2C19 polymorphism in a sample of individuals residing in five countries within two continents.

3.
Front Pharmacol ; 15: 1373007, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38756376

RESUMO

Introduction: Gastric cancer is one of the most prevalent types of cancer worldwide. The World Health Organization (WHO), the International Agency for Research on Cancer (IARC), and the Global Cancer Statistics (GLOBOCAN) reported an age standardized global incidence rate of 9.2 per 100,000 individuals for gastric cancer in 2022, with a mortality rate of 6.1. Despite considerable progress in precision oncology through the efforts of international consortia, understanding the genomic features and their influence on the effectiveness of anti-cancer treatments across diverse ethnic groups remains essential. Methods: Our study aimed to address this need by conducting integrated in silico analyses to identify actionable genomic alterations in gastric cancer driver genes, assess their impact using deleteriousness scores, and determine allele frequencies across nine global populations: European Finnish, European non-Finnish, Latino, East Asian, South Asian, African, Middle Eastern, Ashkenazi Jewish, and Amish. Furthermore, our goal was to prioritize targeted therapeutic strategies based on pharmacogenomics clinical guidelines, in silico drug prescriptions, and clinical trial data. Results: Our comprehensive analysis examined 275,634 variants within 60 gastric cancer driver genes from 730,947 exome sequences and 76,215 whole-genome sequences from unrelated individuals, identifying 13,542 annotated and predicted oncogenic variants. We prioritized the most prevalent and deleterious oncogenic variants for subsequent pharmacogenomics testing. Additionally, we discovered actionable genomic alterations in the ARID1A, ATM, BCOR, ERBB2, ERBB3, CDKN2A, KIT, PIK3CA, PTEN, NTRK3, TP53, and CDKN2A genes that could enhance the efficacy of anti-cancer therapies, as suggested by in silico drug prescription analyses, reviews of current pharmacogenomics clinical guidelines, and evaluations of phase III and IV clinical trials targeting gastric cancer driver proteins. Discussion: These findings underline the urgency of consolidating efforts to devise effective prevention measures, invest in genomic profiling for underrepresented populations, and ensure the inclusion of ethnic minorities in future clinical trials and cancer research in developed countries.

4.
Front Pharmacol ; 15: 1376638, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38659583

RESUMO

Introduction: One of the primary obstacles faced by individuals with advanced colorectal cancer (CRC) is the potential development of acquired chemoresistance as the disease advances. Studies have indicated a direct association between elevated levels of miR-92a-3p and the progression, metastasis, and chemoresistance observed in CRC. We proposed that miR-92a-3p impairs FOLFOX (fluorouracil/oxaliplatin) chemotherapy response by upregulating the expression of chemoresistance biomarker genes through the activation of ß-catenin and epithelial-mesenchymal transition (EMT). These FOLFOX biomarker genes include the pyrimidine biosynthesis pathway genes dihydropyrimidine dehydrogenase (DPYD), thymidylate synthase (TYMS), methylenetetrahydrofolate reductase (MTHFR), and the genes encoding the DNA repair complexes subunits ERCC1 and ERCC2, and XRCC1. Methods: To assess this, we transfected SW480 and SW620 colon cancer cell lines with miR-92a-3p mimics and then quantified the expression of DPYD, TYMS, MTHFR, ERCC1, ERCC2, and XRCC1, the expression of EMT markers and transcription factors, and activation of ß-catenin. Results and discussion: Our results reveal that miR-92a-3p does not affect the expression of DPYD, TYMS, MTHFR, and ERCC1. Furthermore, even though miR-92a-3p affects ERCC2, XRCC1, E-cadherin, and ß-catenin mRNA levels, it has no influence on their protein expression. Conclusion: We found that miR-92a-3p does not upregulate the expression of proteins of DNA-repair pathways and other genes involved in FOLFOX chemotherapy resistance.

5.
Pharmaceutics ; 16(4)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38675222

RESUMO

BACKGROUND: Pharmacogenomic knowledge as a biomarker for cancer care has transformed clinical practice, however, as current guidelines are primarily derived from Eurocentric populations, this limits their application in Latin America, particularly among Hispanic or Latino groups. Despite advancements, systemic chemotherapy still poses challenges in drug toxicity and suboptimal response. This study explores pharmacogenetic markers related to anticancer drugs in a Chilean cohort, filling a gap in Latin American research. Notably, the influence of native South American Mapuche-Huilliche ancestry. METHODS: To explore pharmacogenetic markers related to anticancer drugs, we utilized an ethnically Admixed Chilean genome-wide association studies (GWAS) dataset of 1095 unrelated individuals. Pharmacogenomic markers were selected from PharmGKB, totaling 36 level 1 and 2 evidence single nucleotide polymorphisms (SNPs) and 571 level 3 SNPs. Comparative analyses involved assessing SNP frequencies across diverse populations from the 1000 Genomes Project. Haplotypes were estimated, and linkage disequilibrium was examined. Ancestry-based association analyses explored relationships between SNPs and Mapuche-Huilliche and European ancestries. Chi-square distribution with p ≤ 0.05 and Bonferroni's multiple adjustment tests determined statistical differences between allele frequencies. RESULTS: Our study reveals significant disparities in SNP frequency within the Chilean population. Notably, dihydropyrimidine dehydrogenase (DPYD) variants (rs75017182 and rs67376798), linked to an increased risk of severe fluoropyrimidine toxicity, exhibit an exceptionally low frequency (minor allele frequency (MAF) < 0.005). Nudix hydrolase 15 (NUDT15) rs116855232, associated with hematological mercaptopurine toxicity, is relatively common (MAF = 0.062), and is further linked to Mapuche-Huilliche ancestry. Thiopurine methyltransferase enzyme (TPMT), implicated in severe toxicity to mercaptopurines, SNPs rs1142345 and rs1800460 of TMPT gene demonstrate higher MAFs in Admixed Americans and the Chilean population (MAF range 0.031-0.057). Finally, the variant in the UDP-glucuronosyltransferase 1 gene (UGT1A1) rs4148323, correlated with irinotecan neutropenia, exhibits the highest MAF in East Asian (MAF = 0.136) and Chilean (MAF = 0.025) populations, distinguishing them from other investigated populations. CONCLUSIONS: This study provides the first comprehensive pharmacogenetic characterization of cancer therapy-related SNPs and highlights significant disparities in SNP frequencies within the Chilean population. Our findings underscore the necessity for inclusive research and personalized therapeutic strategies to ensure the equitable and effective application of precision medicine across diverse global communities.

6.
Curr Oncol ; 31(1): 274-295, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38248103

RESUMO

Colorectal cancer is a common disease, both in Chile and worldwide. The most widely used chemotherapy schemes are based on 5-fluorouracil (5FU) as the foundational drug (FOLFOX, CapeOX). Genetic polymorphisms have emerged as potential predictive biomarkers of response to chemotherapy, but conclusive evidence is lacking. This study aimed to investigate the role of genetic variants associated with 5FU-based chemotherapy on therapeutic response, considering their interaction with oncogene mutations (KRAS, NRAS, PI3KCA, AKT1, BRAF). In a retrospective cohort of 63 patients diagnosed with metastatic colorectal cancer, a multivariate analysis revealed that liver metastases, DPYD, ABCB1, and MTHFR polymorphisms are independent indicators of poor prognosis, irrespective of oncogene mutations. BRAF wild-type status and high-risk drug-metabolism polymorphisms correlated with a poor prognosis in this Chilean cohort. Additionally, findings from the genomics of drug sensitivity (GDSC) project demonstrated that cell lines with wild-type BRAF have higher IC50 values for 5-FU compared to BRAF-mutated cell lines. In conclusion, the genetic polymorphisms DPYDrs1801265, ABCB1rs1045642, and MTHFRrs180113 may serve as useful biomarkers for predicting a poor prognosis in patients undergoing 5-fluorouracil chemotherapy, regardless of oncogene mutations.


Assuntos
Neoplasias Colorretais , Proteínas Proto-Oncogênicas B-raf , Humanos , Proteínas Proto-Oncogênicas B-raf/genética , Estudos Retrospectivos , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Mutação , Fluoruracila/uso terapêutico , Biomarcadores
7.
Front Med (Lausanne) ; 10: 1271863, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37869162

RESUMO

Introduction: Long-term pulmonary dysfunction (L-TPD) is one of the most critical manifestations of long-COVID. This lung affection has been associated with disease severity during the acute phase and the presence of previous comorbidities, however, the clinical manifestations, the concomitant consequences and the molecular pathways supporting this clinical condition remain unknown. The aim of this study was to identify and characterize L-TPD in patients with long-COVID and elucidate the main pathways and long-term consequences attributed to this condition by analyzing clinical parameters and functional tests supported by machine learning and serum proteome profiling. Methods: Patients with L-TPD were classified according to the results of their computer-tomography (CT) scan and diffusing capacity of the lungs for carbon monoxide adjusted for hemoglobin (DLCOc) tests at 4 and 12-months post-infection. Results: Regarding the acute phase, our data showed that L-TPD was favored in elderly patients with hypertension or insulin resistance, supported by pathways associated with vascular inflammation and chemotaxis of phagocytes, according to computer proteomics. Then, at 4-months post-infection, clinical and functional tests revealed that L-TPD patients exhibited a restrictive lung condition, impaired aerobic capacity and reduced muscular strength. At this time point, high circulating levels of platelets and CXCL9, and an inhibited FCgamma-receptor-mediated-phagocytosis due to reduced FcγRIII (CD16) expression in CD14+ monocytes was observed in patients with L-TPD. Finally, 1-year post infection, patients with L-TPD worsened metabolic syndrome and augmented body mass index in comparison with other patient groups. Discussion: Overall, our data demonstrated that CT scan and DLCOc identified patients with L-TPD after COVID-19. This condition was associated with vascular inflammation and impair phagocytosis of virus-antibody immune complexes by reduced FcγRIII expression. In addition, we conclude that COVID-19 survivors required a personalized follow-up and adequate intervention to reduce long-term sequelae and the appearance of further metabolic diseases.

8.
Rev. méd. Chile ; 151(10): 1375-1384, oct. 2023. tab, ilus
Artigo em Espanhol | LILACS | ID: biblio-1565656

RESUMO

Siponimod es un medicamento inmunosupresor selectivo, desarrollado como la primera terapia oral para la esclerosis múltiple secundaria progresiva activa. Este medicamento actúa modulando el receptor de esfingosina 1 fosfato (S1P), como antagonista de S1P1 y S1P5, evitando así la salida de linfocitos desde los nódulos linfáticos y previniendo procesos inflamatorios en el Sistema Nervioso Central que desencadenan una desmielinización. Existe amplio conocimiento científico respecto a que la administración del medicamento a pacientes va a depender de sus características farmacogenéticas, por lo que la FDA recomienda fuertemente realizar un estudio de genotipificación de la enzima que metaboliza siponimod, CYP2C9, cuyas variantes genéticas *2 y *3 clasifican a pacientes como metabolizadores pobres, extensivos o rápidos. Para pacientes homocigotos de CYP2C9*3 siponimod está totalmente contraindicado. Adicionalmente, antes de su prescripción se debe realizar un electrocardiograma, evaluaciones del estado de anticuerpos, oftálmica, estado de vacunación contra varicela y recuento de linfocitos periféricos, ya que el efecto del medicamento es dependiente de la dosis administrada, por lo que se realiza un proceso de titulación en dosis desde los 0,25mg hasta los 2 mg. El protocolo farmacoterapéutico de siponimod es reflejo fidedigno de la utilidad de la farmacogenética en la medicina personalizada..


Siponimod is a selective immunosuppressive medication, developed as the first oral therapy for active secondary progressive multiple sclerosis. This medication acts by modulating the sphingosine 1 phosphate (S1P) receptor, as an antagonist of S1P1 and S1P5, thus preventing the egress of lymphocytes from lymph nodes and preventing inflammatory processes in the Central Nervous System that trigger demyelination. There is extensive scientific knowledge regarding the administration of the medication to patients, which will depend on their pharmacogenetic characteristics. Therefore, the FDA strongly recommends conducting a genotyping study of the enzyme that metabolizes siponimod, CYP2C9, whose genetic variants *2 and *3 classify patients as poor, extensive, or rapid metabolizers. Siponimod is completely contraindicated for patients who are homozygous for CYP2C9*3. Additionally, before prescribing it, an electrocardiogram, assessments of antibody status, ophthalmic evaluation, varicella vaccination status, and peripheral lymphocyte count should be conducted, as the medication's effect is dose-dependent. Therefore, a titration process is carried out starting from 0.25mg up to 2 mg. The pharmacotherapeutic protocol of siponimod is a reliable reflection of the utility of pharmacogenetics in personalized medicine.


Assuntos
Humanos , Azetidinas/administração & dosagem , Azetidinas/uso terapêutico , Compostos de Benzil/administração & dosagem , Compostos de Benzil/uso terapêutico , Esclerose Múltipla Crônica Progressiva/genética , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Farmacogenética , Relação Dose-Resposta a Droga , Moduladores do Receptor de Esfingosina 1 Fosfato/administração & dosagem , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Imunossupressores/administração & dosagem , Imunossupressores/uso terapêutico
10.
Rev Med Chil ; 151(10): 1375-1384, 2023 Oct.
Artigo em Espanhol | MEDLINE | ID: mdl-39093141

RESUMO

Siponimod is a selective immunosuppressive medication, developed as the first oral therapy for active secondary progressive multiple sclerosis. This medication acts by modulating the sphingosine 1 phosphate (S1P) receptor, as an antagonist of S1P1 and S1P5, thus preventing the egress of lymphocytes from lymph nodes and preventing inflammatory processes in the Central Nervous System that trigger demyelination. There is extensive scientific knowledge regarding the administration of the medication to patients, which will depend on their pharmacogenetic characteristics. Therefore, the FDA strongly recommends conducting a genotyping study of the enzyme that metabolizes siponimod, CYP2C9, whose genetic variants *2 and *3 classify patients as poor, extensive, or rapid metabolizers. Siponimod is completely contraindicated for patients who are homozygous for CYP2C9*3. Additionally, before prescribing it, an electrocardiogram, assessments of antibody status, ophthalmic evaluation, varicella vaccination status, and peripheral lymphocyte count should be conducted, as the medication's effect is dose-dependent. Therefore, a titration process is carried out starting from 0.25mg up to 2 mg. The pharmacotherapeutic protocol of siponimod is a reliable reflection of the utility of pharmacogenetics in personalized medicine.


Assuntos
Azetidinas , Compostos de Benzil , Esclerose Múltipla Crônica Progressiva , Humanos , Compostos de Benzil/administração & dosagem , Compostos de Benzil/uso terapêutico , Azetidinas/administração & dosagem , Azetidinas/uso terapêutico , Esclerose Múltipla Crônica Progressiva/tratamento farmacológico , Esclerose Múltipla Crônica Progressiva/genética , Imunossupressores/uso terapêutico , Imunossupressores/administração & dosagem , Moduladores do Receptor de Esfingosina 1 Fosfato/administração & dosagem , Moduladores do Receptor de Esfingosina 1 Fosfato/uso terapêutico , Farmacogenética , Relação Dose-Resposta a Droga
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA