Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Astrobiology ; 23(12): 1284-1302, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856168

RESUMO

We report on a field demonstration of a rover-based drilling mission to search for biomolecular evidence of life in the arid core of the Atacama Desert, Chile. The KREX2 rover carried the Honeybee Robotics 1 m depth The Regolith and Ice Drill for Exploration of New Terrains (TRIDENT) drill and a robotic arm with scoop that delivered subsurface fines to three flight prototype instruments: (1) The Signs of Life Detector (SOLID), a protein and biomolecule analyzer based on fluorescence sandwich microarray immunoassay; (2) the Planetary In Situ Capillary Electrophoresis System (PISCES), an amino acid analyzer based on subcritical water extraction coupled to microchip electrophoresis analysis; and (3) a Wet Chemistry Laboratory cell to measure soluble ions using ion selective electrodes and chronopotentiometry. A California-based science team selected and directed drilling and sampling of three sites separated by hundreds of meters that included a light-toned basin area showing evidence of aqueous activity surrounded by a rocky desert pavement. Biosignatures were detected in basin samples collected at depths ranging from 20 to 80 cm but were not detected in the surrounding area. Subsurface stratigraphy of the units drilled was interpreted from drill sensor data as fine-scale layers of sand/clay sediments interspersed with layers of harder material in the basins and a uniform subsurface composed of course-to-fine sand in the surroundings. The mission timeline and number of commands sent to accomplish each activity were tracked. The deepest sample collected (80 cm) required 55 commands, including drilling and delivery to three instruments. Elapsed time required for drilling and sample handling was less than 3 hours to collect sample from 72 cm depth, including time devoted to recovery from a jammed drill. The experiment demonstrated drilling, sample transfer technologies, and instruments that accomplished successful detection of biomolecular evidence of life in one of the most biologically sparse environments on Earth.


Assuntos
Exobiologia , Marte , Robótica , Chile , Planetas , Areia , Água
2.
Science ; 302(5647): 1018-21, 2003 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-14605363

RESUMO

The Viking missions showed the martian soil to be lifeless and depleted in organic material and indicated the presence of one or more reactive oxidants. Here we report the presence of Mars-like soils in the extreme arid region of the Atacama Desert. Samples from this region had organic species only at trace levels and extremely low levels of culturable bacteria. Two samples from the extreme arid region were tested for DNA and none was recovered. Incubation experiments, patterned after the Viking labeled-release experiment but with separate biological and nonbiological isomers, show active decomposition of organic species in these soils by nonbiological processes.


Assuntos
Bactérias/crescimento & desenvolvimento , Clima Desértico , Microbiologia do Solo , Microbiologia do Ar , Alanina/química , Alanina/metabolismo , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Benzeno/análise , Biodiversidade , Chile , Contagem de Colônia Microbiana , DNA Bacteriano/análise , DNA Bacteriano/genética , Formiatos/análise , Formiatos/química , Formiatos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Genes de RNAr , Glucose/química , Glucose/metabolismo , Marte , Compostos Orgânicos/análise , Oxirredução , Fotoquímica , Reação em Cadeia da Polimerase , Estereoisomerismo , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA