Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Microbiol Biol Educ ; 25(2): e0004024, 2024 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-38771051

RESUMO

Science misinformation represents a significant challenge for the scientific community. Hispanic communities are particularly vulnerable due to language barriers and the lack of accessible information in Spanish. We identified that a key step toward enhancing the accessibility of information for non-native English-speaking communities involves imparting science communication education and training to Hispanic youth. Our goal was to provide them with the skills to become science ambassadors who can effectively engage with their communities and bridge communication gaps. To address this, we developed the first science communication training program in Spanish for Hispanic high school and undergraduate students in Puerto Rico. The program called +Ciencia aims to provide training and education on science communication for Hispanic minorities through experiential and collaborative learning. In the short term, our multifaceted approach works to counter misinformation and promote science literacy within the broader community. Over the long term, our grassroots efforts with students will evolve into a generation of professionals equipped with strong engagement skills and comprehensive training in science communication with a specific focus on Hispanic audiences. Herein, we describe the components of this educational program and provide open access to educational materials and articles developed by three cohorts.

2.
Sci Rep ; 9(1): 2275, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30783117

RESUMO

Parasitic helminths and helminth-derived molecules have demonstrated to possess powerful anti-inflammatory properties and confirmed therapeutic effects on inflammatory diseases. The helminth Fasciola hepatica has been reported to suppress specific Th1 specific immune responses induced by concurrent bacterial infections, thus demonstrating its anti-inflammatory ability in vivo. In this study, we demonstrate that native F. hepatica glutathione S-transferase (nFhGST), a major parasite excretory-secretory antigen, majorly comprised of Mu-class GST isoforms, significantly suppresses the LPS-induced TNFα and IL1ß of mouse bone-marrow derived macrophages in vitro and the pro-inflammatory cytokine/chemokine storm within C57BL/6 mice exposed to lethal doses of LPS increasing their survival rate by more than 85%. Using THP1-Blue CD14 cells, a human monocyte cell line, we also demonstrate that nFhGST suppresses NF-κB activation in response to multiple TLR-ligands, including whole bacteria clinical isolates and this suppression was found to be dose-dependent and independent of the timing of exposure. Moreover, the suppressive effect of nFhGST on NF-κB activation was shown to be independent of enzyme activity or secondary structure of protein. As part of its anti-inflammatory effect nFhGST target multiple proteins of the canonic and non-canonic NF-κB signaling pathway as well as also JAK/STAT pathway. Overall, our results demonstrate the potent anti-inflammatory properties of nFhGST and its therapeutic potential as an anti-inflammatory agent.


Assuntos
Citocinas/imunologia , Fasciola hepatica/imunologia , Glutationa Transferase/imunologia , Proteínas de Helminto/imunologia , NF-kappa B/imunologia , Choque Séptico/imunologia , Transdução de Sinais/imunologia , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Células THP-1
3.
mSphere ; 3(6)2018 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-30567900

RESUMO

Sepsis caused by Gram-negative bacteria is the consequence of an unrestrained infection that continuously releases lipopolysaccharide (LPS) into the bloodstream, which triggers an uncontrolled systemic inflammatory response leading to multiorgan failure and death. After scrutinizing the immune modulation exerted by a recombinant Fasciola hepatica fatty acid binding protein termed Fh15, our group demonstrated that addition of Fh15 to murine macrophages 1 h prior to LPS stimulation significantly suppresses the expression of proinflammatory cytokines tumor necrosis factor alpha (TNF-α) and interleukin-1ß (IL1-ß). The present study aimed to demonstrate that Fh15 could exert a similar anti-inflammatory effect in vivo using a mouse model of septic shock. Among the novel findings reported in this article, (i) Fh15 suppressed numerous serum proinflammatory cytokines/chemokines when injected intraperitoneally 1 h after exposure of animals to lethal doses of LPS, (ii) concurrently, Fh15 increased the population of large peritoneal macrophages (LPMs) in the peritoneal cavity (PerC) of LPS-injected animals, and (iii) Fh15 downregulated the expression on spleen macrophages of CD38, a cell surface ectoenzyme with a critical role during inflammation. These findings present the first evidence that the recombinant parasitic antigen Fh15 is an excellent modulator of the PerC cell content and in vivo macrophage activation, endorsing Fh15's potential as a drug candidate against sepsis-related inflammatory response.IMPORTANCE Sepsis is a potentially life-threatening complication of an infection. Sepsis is mostly the consequence of systemic bacterial infections leading to exacerbated activation of immune cells by bacterial products, resulting in enhanced release of inflammatory mediators. Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is a critical factor in the pathogenesis of sepsis, which is sensed by Toll-like receptor 4 (TLR4). The scientific community highly pursues the development of antagonists capable of blocking the cytokine storm by blocking TLR4. We report here that a recombinant molecule of 14.5 kDa belonging to the Fasciola hepatica fatty acid binding protein (Fh15) is capable of significantly suppressing the LPS-induced cytokine storm in a mouse model of septic shock when administered by the intraperitoneal route 1 h after a lethal LPS injection. These results suggest that Fh15 is an excellent candidate for drug development against endotoxemia.


Assuntos
Movimento Celular/efeitos dos fármacos , Citocinas/metabolismo , Proteínas de Ligação a Ácido Graxo/administração & dosagem , Proteínas de Helminto/administração & dosagem , Lipopolissacarídeos/imunologia , Macrófagos Peritoneais/efeitos dos fármacos , Macrófagos Peritoneais/fisiologia , Choque Séptico/patologia , ADP-Ribosil Ciclase 1/análise , Animais , Células Cultivadas , Citosol/química , Modelos Animais de Doenças , Ácidos Graxos/análise , Injeções Intravenosas , Glicoproteínas de Membrana/análise , Camundongos , Proteínas Recombinantes/administração & dosagem , Baço/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA