Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Manage ; 73(2): 425-442, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37864753

RESUMO

The potential of pyrolyzed Mytella falcata shells as an adsorbent for removing methylene blue dye molecules from aqueous solutions was investigated. The study found that the adsorbent produced at 600 °C of pyrolysis temperature, with an adsorbent mass of 0.5 g, particle diameter of 0.297-0.149 mm, and pH 12.0, demonstrated the highest dye molecule removal efficiency of 82.41%. The material's porosity was observed through scanning electron microscopy, which is favorable for adsorption, while Fourier-transform infrared spectroscopy and X-Ray diffraction analysis analyses confirmed the presence of calcium carbonate in the crystalline phases. The pseudo-second order model was found to be the best fit for the data, suggesting that the adsorption mechanism involves two steps: external diffusion and diffusion via the solid pores. The Redlich-Peterson isotherm model better represented the equilibrium data, and the methylene blue adsorption was found to be spontaneous, favorable, and endothermic. The hydrogen peroxide with UV oxidation was found to be the most efficient method of regeneration, with a regeneration percentage of 63% achieved using 600 mmol.L-1 of oxidizing agents. The results suggest that pyrolyzed Mytella falcata shells could serve as an ecologically viable adsorbent alternative, reducing the amount of waste produced in the local environment and at the same time removing pollutants from the water. The material's adsorption capacity remained almost constant in the first adsorption-oxidation cycles, indicating its potential for repeated use.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Termodinâmica , Azul de Metileno/química , Fotólise , Concentração de Íons de Hidrogênio , Temperatura , Cinética , Adsorção , Água , Poluentes Químicos da Água/química
2.
J Hazard Mater ; 443(Pt B): 130273, 2023 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-36327849

RESUMO

The accelerated use, massive disposal, and contamination with face masks during the COVID-19 pandemic have raised new questions regarding their negative impact on the environment emerged. One major concern is whether microplastics (MPs) derived from face masks (FMPs) represent an important ecotoxicological hazard. Here, we discussed the shortcomings, loose ends, and considerations of the current literature investigating the ecotoxicological effects of FMPs on aquatic and terrestrial organisms. Overall, there are multiple uncertainties regarding the true impact of FMPs at a certain concentration due to the presence of uncontrolled or unknown degradation products, such as MPs of various size ranges even nano-sized (<1 µm) and chemical additives. It is apparent that FMPs may induce endocrine-disrupting and behavioral effects in different organisms. However, the results of FMPs should be carefully interpreted, as these cannot be extrapolated at a global scale, by taking into account a number of criteria such as face mask manufacturers, providers, consumer preferences, and type of face masks. Considering these uncertainties, it is still not possible to estimate the contribution of face masks to the already existing MP issue.


Assuntos
COVID-19 , Máscaras , Humanos , Microplásticos/toxicidade , Plásticos , Pandemias , COVID-19/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA