Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 291(4): 744-760, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950580

RESUMO

During the infectious process, pathogenic microorganisms must obtain nutrients from the host in order to survive and proliferate. These nutritional sources include the metallic nutrient copper. Despite its essentiality, copper in large amounts is toxic. Host defense mechanisms use high copper poisoning as a fungicidal strategy to control infection. Transcriptional analyses showed that yeast cultured in the presence of copper or inside macrophages (24 h) had elevated expression of CRP1, a copper efflux pump, suggesting that Histoplasma capsulatum could be exposed to a high copper environment in macrophages during the innate immune stage of infection. Accordingly, macrophages cultured in high copper are more efficient in controlling H. capsulatum growth. Also, silencing of ATP7a, a copper pump that promotes the copper influx in phagosomes, increases fungal survival in macrophages. The rich copper environment faced by the fungus is not dependent on IFN-γ, since fungal CRP1 expression is induced in untreated macrophages. Appropriately, CRP1 knockdown fungal strains are more susceptible to macrophage control than wild-type yeasts. Additionally, CRP1 silencing decreases fungal burden in mice during the phase of innate immune response (4-day postinfection) and CRP1 is required for full virulence in a macrophage cell lines (J774 A.1 and RAW 264.7), as well as primary cells (BMDM). Thus, induction of fungal copper detoxifying genes during innate immunity and the attenuated virulence of CRP1-knockdown yeasts suggest that H. capsulatum is exposed to a copper-rich environment at early infection, but circumvents this condition to establish infection.


Assuntos
Cobre , Histoplasma , Animais , Camundongos , Histoplasma/genética , Cobre/metabolismo , Virulência , Macrófagos/metabolismo , Imunidade Inata
2.
FEMS Yeast Res ; 18(8)2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30101348

RESUMO

The fungal APSES protein family of transcription factors is characterized by a conserved DNA-binding motif facilitating regulation of gene expression in fungal development and other biological processes. However, their functions in the thermally dimorphic fungal pathogen Histoplasma capsulatum are unexplored. Histoplasma capsulatum switches between avirulent hyphae in the environment and virulent yeasts in mammalian hosts. We identified five APSES domain-containing proteins in H. capsulatum homologous to Swi6, Mbp1, Stu1 and Xbp1 proteins and one protein found in related Ascomycetes (APSES-family protein 1; Afp1). Through transcriptional analyses and RNA interference-based functional tests we explored their roles in fungal biology and virulence. Mbp1 serves an essential role and Swi6 contributes to full yeast cell growth. Stu1 is primarily expressed in mycelia and is necessary for aerial hyphae development and conidiation. Xbp1 is the only factor enriched specifically in yeast cells. The APSES proteins do not regulate conversion of conidia into yeast and hyphal morphologies. The APSES-family transcription factors are not individually required for H. capsulatum infection of cultured macrophages or murine infection, nor do any contribute significantly to resistance to cellular stresses including cell wall perturbation, osmotic stress, oxidative stress or antifungal treatment. Further studies of the downstream genes regulated by the individual APSES factors will be helpful in revealing their functional roles in H. capsulatum biology.


Assuntos
Regulação Fúngica da Expressão Gênica , Histoplasma/citologia , Histoplasma/crescimento & desenvolvimento , Hifas/citologia , Hifas/crescimento & desenvolvimento , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Adesão Celular , Linhagem Celular , Perfilação da Expressão Gênica , Histoplasma/genética , Histoplasma/patogenicidade , Histoplasmose/microbiologia , Histoplasmose/patologia , Pulmão/patologia , Macrófagos/microbiologia , Camundongos Endogâmicos C57BL , Interferência de RNA , Virulência , Fatores de Virulência/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA