Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 86(7): 2785-2801, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34160057

RESUMO

This review discusses the application of oleogel technology in emulsified systems. In these systems of mimetic fats, water-in-oil or oil-in-water emulsions can be obtained, but, here, we cover emulsions with an oil continuous phase in detail. Depending on the percentage of water added to the oleogels, systems with different textures and rheological properties can be developed. These properties are affected by the characteristics and concentration of the added components and emulsion preparation methods. In addition, some gelators exhibit interfacial properties, resulting in more stable emulsions than those of conventional emulsions. Oleogel-based emulsion are differentiated by continuous and dispersed phases and the structuring/emulsification components. Crucially, these emulsions could be applied by the food industry for preparing, for example, meat products and margarines, as well as by the cosmetics industry. We present the different processes of emulsion elaboration, the main gelators used, the influence of the water content on the structuring of water-in-oleogel emulsions, and the structuring mechanisms (Pickering, network, and combined Pickering and network stabilization). Finally, we highlight the applications of these systems as alternatives for reducing processed food lipid content and saturated fat levels.


Assuntos
Emulsões , Ácidos Graxos/análise , Margarina/análise , Produtos da Carne/análise , Reologia , Compostos Orgânicos/química
2.
Chem Phys Lipids ; 212: 51-60, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29366737

RESUMO

The characterization of fat components becomes very useful for formulation of shortening, margarines and fat products due to their unique properties of plasticity, texture, solubility, and aeration. However, X-ray diffraction experiments on such materials are usually limited to a qualitative evaluation of the polymorphic properties based only on the characteristic d-spacing peak intensities. In this work, interesting results based on the Rietveld Method have supported both a Quantitative Phase Analysis and Degree of Crystallinity study on industrial and academic appealing samples, such as triacylglycerol standards, fully hydrogenated vegetable oils (hardfats) and cocoa butter. This useful approach to the area of oils and fats can provide valuable information about the polymorphism and its relationship to the application of lipid materials in food science and technology. Here, the discrimination between ß and ß' polymorphs on samples made of mixtures or blended hardfats was attained, and the results have shown a relevant contrast in comparison to a purely qualitative approach. Assessment of amorphous content on cocoa butter samples was achieved by isolating its contribution from the total X-ray diffraction background via mathematical tools during the whole pattern fitting.


Assuntos
Triglicerídeos/análise , Difração de Raios X , Cristalização , Gorduras na Dieta/análise , Óleos de Plantas/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA