Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ticks Tick Borne Dis ; 13(3): 101910, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35121230

RESUMO

The synganglion is the central nervous system of ticks and, as such, controls tick physiology. It does so through the production and release of signaling molecules, many of which are neuropeptides. These peptides can function as neurotransmitters, neuromodulators and/or neurohormones, although in most cases their functions remain to be established. We identified and performed in silico characterization of neuropeptides present in different life stages and organs of Rhipicephalus microplus, generating transcriptomes from ovary, salivary glands, fat body, midgut and embryo. Annotation of synganglion transcripts led to the identification of 32 functional categories of proteins, of which the most abundant were: secreted, energetic metabolism and oxidant metabolism/detoxification. Neuropeptide precursors are among the sequences over-represented in R. microplus synganglion, with at least 5-fold higher transcription compared with other stages/organs. A total of 52 neuropeptide precursors were identified: ACP, achatin, allatostatins A, CC and CCC, allatotropin, bursicon A/B, calcitonin A and B, CCAP, CCHamide, CCRFamide, CCH/ITP, corazonin, DH31, DH44, eclosion hormone, EFLamide, EFLGGPamide, elevenin, ETH, FMRFamide myosuppressin-like, glycoprotein A2/B5, gonadulin, IGF, inotocin, insulin-like peptides, iPTH, leucokinin, myoinhibitory peptide, NPF 1 and 2, orcokinin, proctolin, pyrokinin/periviscerokinin, relaxin, RYamide, SIFamide, sNPF, sulfakinin, tachykinin and trissin. Several of these neuropeptides have not been previously reported in ticks, as the presence of ETH that was first clearly identified in Parasitiformes, which include ticks and mites. Prediction of the mature neuropeptides from precursor sequences was performed using available information about these peptides from other species, conserved domains and motifs. Almost all neuropeptides identified are also present in other tick species. Characterizing the role of neuropeptides and their respective receptors in tick physiology can aid the evaluation of their potential as drug targets.


Assuntos
Ixodidae , Neuropeptídeos , Rhipicephalus , Animais , Feminino , Ixodidae/metabolismo , Neuropeptídeos/química , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Peptídeos , Rhipicephalus/genética , Rhipicephalus/metabolismo , Transcriptoma
2.
PLoS Pathog ; 16(8): e1008230, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32797076

RESUMO

Neutrophil extracellular traps (NETs) evolved as a unique effector mechanism contributing to resistance against infection that can also promote tissue damage in inflammatory conditions. Malaria infection can trigger NET release, but the mechanisms and consequences of NET formation in this context remain poorly characterized. Here we show that patients suffering from severe malaria had increased amounts of circulating DNA and increased neutrophil elastase (NE) levels in plasma. We used cultured erythrocytes and isolated human neutrophils to show that Plasmodium-infected red blood cells release macrophage migration inhibitory factor (MIF), which in turn caused NET formation by neutrophils in a mechanism dependent on the C-X-C chemokine receptor type 4 (CXCR4). NET production was dependent on histone citrullination by peptidyl arginine deiminase-4 (PAD4) and independent of reactive oxygen species (ROS), myeloperoxidase (MPO) or NE. In vitro, NETs functioned to restrain parasite dissemination in a mechanism dependent on MPO and NE activities. Finally, C57/B6 mice infected with P. berghei ANKA, a well-established model of cerebral malaria, presented high amounts of circulating DNA, while treatment with DNAse increased parasitemia and accelerated mortality, indicating a role for NETs in resistance against Plasmodium infection.


Assuntos
Eritrócitos/imunologia , Armadilhas Extracelulares/imunologia , Fatores Inibidores da Migração de Macrófagos/metabolismo , Malária/imunologia , Neutrófilos/imunologia , Plasmodium/imunologia , Receptores CXCR4/metabolismo , Animais , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/parasitologia , Humanos , Malária/metabolismo , Malária/parasitologia , Malária/patologia , Camundongos , Camundongos Endogâmicos C57BL , Neutrófilos/metabolismo , Neutrófilos/parasitologia , Parasitemia/imunologia , Parasitemia/metabolismo , Parasitemia/parasitologia , Parasitemia/patologia
3.
J Proteomics ; 174: 47-60, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29288089

RESUMO

Triatoma dimidiata, a Chagas disease vector widely distributed along Central America, has great capability for domestic adaptation as the majority of specimens caught inside human dwellings or in peridomestic areas fed human blood. Exploring the salivary compounds that overcome host haemostatic and immune responses is of great scientific interest. Here, we provide a deeper insight into its salivary gland molecules. We used high-throughput RNA sequencing to examine in depth the T. dimidiata salivary gland transcriptome. From >51 million reads assembled, 92.21% are related to putative secreted proteins. Lipocalin is the most abundant gene family, confirming it is an expanded family in Triatoma genus salivary repertoire. Other putatively secreted members include phosphatases, odorant binding protein, hemolysin, proteases, protease inhibitors, antigen-5 and antimicrobial peptides. This work expands the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI from 388 to 3815. Additionally, we complemented the salivary analysis through proteomics (available data via ProteomeXchange with identifier PXD008510), disclosing the set complexity of 119 secreted proteins and validating the transcriptomic results. Our large-scale approach enriches the pharmacologically active molecules database and improves our knowledge about the complexity of salivary compounds from haematophagous vectors and their biological interactions. SIGNIFICANCE: Several haematophagous triatomine species can transmit Trypanosoma cruzi, the etiological agent of Chagas disease. Due to the reemergence of this disease, new drugs for its prevention and treatment are considered priorities. For this reason, the knowledge of vector saliva emerges as relevant biological finding, contributing to the design of different strategies for vector control and disease transmission. Here we report the transcriptomic and proteomic compositions of the salivary glands (sialome) of the reduviid bug Triatoma dimidiata, a relevant Chagas disease vector in Central America. Our results are robust and disclosed unprecedented insights into the notable diversity of its salivary glands content, revealing relevant anti-haemostatic salivary gene families. Our work expands almost ten times the previous set of functionally annotated sequences from T. dimidiata salivary glands available in NCBI. Moreover, using an integrated transcriptomic and proteomic approach, we showed a correlation pattern of transcription and translation processes for the main gene families found, an important contribution to the research of triatomine sialomes. Furthermore, data generated here reinforces the secreted proteins encountered can greatly contribute for haematophagic habit, Trypanosoma cruzi transmission and development of therapeutic agent studies.


Assuntos
Glândulas Salivares/química , Triatoma/química , Animais , Doença de Chagas/transmissão , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Insetos Vetores/genética , Transcriptoma/genética , Triatoma/genética
4.
Insect Biochem Mol Biol ; 37(7): 702-12, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17550826

RESUMO

Triatoma brasiliensis is the most important autochthon vector of Trypanosoma cruzi in Brazil, where it is widely distributed in the semiarid areas of the Northeast. In order to advance the knowledge of the salivary biomolecules of Triatominae, a salivary gland cDNA library of T. brasiliensis was mass sequenced and analyzed. Polypeptides were sequenced by HPLC/Edman degradation experiments. Then 1712 cDNA sequences were obtained and grouped in 786 clusters. The housekeeping category had 24.4% and 17.8% of the clusters and sequences, respectively. The putatively secreted category contained 47.1% of the clusters and 68.2% of the sequences. Finally, 28.5% of the clusters, containing 14% of all sequences, were classified as unknown. The sialoma of T. brasiliensis showed a high amount and great variety of different lipocalins (93.8% of secreted proteins). Remarkably, a great number of serine proteases that were not observed in previous blood-sucking sialotranscriptomes were found. Nine Kazal peptides were identified, among them one with high homology to the tabanid vasodilator vasotab, suggesting that the Triatoma vasodilator could be a Kazal protein.


Assuntos
Biologia Computacional , Biblioteca Gênica , Proteínas de Insetos/genética , Saliva/química , Glândulas Salivares/química , Triatoma/metabolismo , Sequência de Aminoácidos , Animais , Apirase/química , Sangue , Brasil , Clonagem Molecular , Ingestão de Alimentos , Hemeproteínas , Proteínas de Insetos/química , Proteínas de Insetos/metabolismo , Insetos Vetores , Filogenia , Glândulas Salivares/fisiologia , Proteínas e Peptídeos Salivares , Alinhamento de Sequência , Análise de Sequência de DNA , Serina Endopeptidases/isolamento & purificação , Serina Endopeptidases/metabolismo , Triatoma/classificação , Triatoma/genética , Trypanosoma cruzi/fisiologia
5.
Ann N Y Acad Sci ; 1026: 242-6, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15604500

RESUMO

The quest for new control strategies for ticks can profit from high throughput genomics. In order to identify genes that are involved in oogenesis and development, in defense, and in hematophagy, the transcriptomes of ovaries, hemocytes, and salivary glands from rapidly ingurgitating females, and of salivary glands from males of Boophilus microplus were PCR amplified, and the expressed sequence tags (EST) of random clones were mass sequenced. So far, more than 1,344 EST have been generated for these tissues, with approximately 30% novelty, depending on the the tissue studied. To date approximately 760 nucleotide sequences from B. microplus are deposited in the NCBI database. Mass sequencing of partial cDNAs of parasite genes can build up this scant database and rapidly generate a large quantity of useful information about potential targets for immunobiological or chemical control.


Assuntos
DNA Complementar/análise , Biblioteca Gênica , Oogênese/genética , Carrapatos/genética , Carrapatos/patogenicidade , Animais , Bovinos , Doenças dos Bovinos/parasitologia , Bases de Dados Genéticas , Feminino , Hemócitos , Masculino , Ovário , Reação em Cadeia da Polimerase , Glândulas Salivares , Análise de Sequência de DNA
6.
Mol Biochem Parasitol ; 137(1): 81-6, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15279954

RESUMO

We have carried out a survey of the genome of Leishmania (Viannia) braziliensis by shotgun sequencing. Approximately 15% of the haploid genome of the parasite (5.15 Mb of genomic sequence) was obtained. A large number of known and putative genes, predicted to be involved in several cellular processes, were identified. Some genomic features were investigated, such as the general G + C content, which was found to be lower than L. major (57% versus 63%). BlastN searches revealed that 60.2% of the clusterized GSS sequences displayed similarity to L. major genomic sequences, while a BlastX search showed that 45.3% of the thus obtained predicted protein sequences showed similarity to annotated proteins of L. major. Further comparison of the degree of conservation between L. major and L. braziliensis revealed that coding regions are much more conserved than non-coding ones. The shotgun sequence analysis of Leishmania braziliensis appears to be an efficient and suitable strategy contributing to the search for vaccines and novel drug targets. The sequence data described in this paper have been submitted to the dbGSS database under the following accession numbers (BX530413 to BX530454; BX530456 to BX530718; BX538354 to BX539305; BX539350 to BX540325; BX541002 to BX544869; BX544893 to BX545685; BX897701 to BX897710; BX905184 to BX907797; BX907798 to BX908381; BX908403 to BX908718). All data including sequences are also available at (www.ebi.ac.uk/embl/).


Assuntos
Genoma de Protozoário , Leishmania braziliensis/genética , Análise de Sequência de DNA , Animais , Composição de Bases , Sequência Conservada , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Genes de Protozoários , Leishmania major/genética , Dados de Sequência Molecular , Família Multigênica , Fases de Leitura Aberta , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA