Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Environ Manage ; 290: 112665, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892238

RESUMO

This work presents the morphological, structural and photocatalytic properties of flexible graphene composites decorated with Ni@TiO2:W nanoparticles (TiNiW NPs) with an average size of 27 ± 2 nm. The TiNiW NPs were immobilized on the surface of a flexible graphene composite using a PVA-based slurry-paste (FG/TiNiW composite). The SEM study showed that the TiNiW NPs remained exposed on the surface of the FG/TiNiW composite, which benefited its photocatalytic activity. The photocatalytic performance for the degradation of acetaminophen (ACT) was evaluated using both the TiNiW powders and the FG/TiNiW composite, obtaining maximum degradation efficiencies of 100 and 86%, respectively, after 3 h under natural solar irradiation. The degradation of ACT was caused mainly by the reactive oxygen species such as OH radicals and h+, which was confirmed by scavenger experiments. Photoluminescence, XPS and absorbance experiments revealed that oxygen vacancy defects were created by i) doping the TiNiW NPs with W and by ii) introducing graphene into the composites. These defects enhanced the absorbance of light in the range of 400-800 nm, which in turn, promoted the photocatalytic degradation of ACT. Moreover, the reuse experiments confirmed that both the TiNiW NPs and FG/TiNiW composite were very stable for the degradation of ACT, since degradation efficiencies >82% were obtained after 4 reuse cycles for both photocatalysts. The experimental findings of this work demonstrate that the flexible TiO2/graphene composites are a feasible option for the removal of pharmaceutical contaminants from water using natural solar irradiation.


Assuntos
Grafite , Nanopartículas , Acetaminofen , Animais , Catálise , Titânio , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA