Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Cardiol Rev ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38275069

RESUMO

The use of cardioprotective strategies as adjuvants of cardioplegic solutions has become an ideal alternative for the improvement of post-surgery heart recovery. The choice of the optimal cardioplegia, as well as its distribution mechanism, remains controversial in the field of cardiovascular surgery. There is still a need to search for new and better cardioprotective methods during cardioplegic procedures. New techniques for the management of cardiovascular complications during cardioplegia have evolved with new alternatives and additives, and each new strategy provides a tool to neutralize the damage after ischemia/reperfusion events. Researchers and clinicians have committed themselves to studying the effect of new strategies and adjuvant components with the potential to improve the cardioprotective effect of cardioplegic solutions in preventing myocardial ischemia/reperfusion-induced injury during cardiac surgery. The aim of this review is to explore the different types of cardioplegia, their protection mechanisms, and which strategies have been proposed to enhance the function of these solutions in hearts exposed to cardiovascular pathologies that require surgical alternatives for their corrective progression.

2.
Front Pharmacol ; 14: 1143888, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37050899

RESUMO

Small extracellular vesicles are nanosized vesicles (30-200 nm) that can ferry proteins, nucleic acids, and lipids between cells and therefore, have significant potential as biomarkers, drug delivery tools or therapeutic agents. SEVs of endothelial origin have been shown to -among other functions-reduce in vitro ischemia/reperfusion (I/R) injury in cardiomyocytes, but whether a pro-inflammatory state of the endothelium impairs the functionality of these SEVs remains to be elucidated. To test this, human umbilical vein endothelial cells cells were treated with TNF-α 10 ng/mL and the expression of the pro-inflammatory parameters VCAM-1, ICAM-1 and eNOS were determined by Western blot. SEVs were isolated from endothelial cells treated with or without TNF-α 10 ng/mL using size exclusion chromatography. The size and concentration of SEVs was measured by Nanoparticle Tracking Analysis. The expression of the surface marker CD81 was determined by immunoassay, whereas their morphology was assessed by electron microscopy. The function of endothelial SEVs was assessed by evaluating their cardioprotective effect in an ex vivo model of global I/R using isolated hearts from adult C57BL/6 mice. Treatment of HUVECs with TNF-α induced the expression of VCAM-1 and ICAM-1, whereas eNOS levels were decreased. TNF-α did not affect the production, size, morphology, or expression of CD81. SEVs significantly reduced the infarct size as compared with untreated mice hearts, but SEVs isolated from TNF-α treated cells were unable to achieve this effect. Therefore, a pro-inflammatory state induced by TNF-α does not alter the production of endothelial SEVs but impairs their function in the setting of I/R injury.

3.
Expert Opin Ther Targets ; 27(3): 207-223, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36880349

RESUMO

INTRODUCTION: The vascular cell adhesion molecule (VCAM-1) is a transmembrane sialoglycoprotein detected in activated endothelial and vascular smooth muscle cells involved in the adhesion and transmigration of inflammatory cells into damaged tissue. Widely used as a pro-inflammatory marker, its potential role as a targeting molecule has not been thoroughly explored. AREAS COVERED: We discuss the current evidence supporting the potential targeting of VCAM-1 in atherosclerosis, diabetes, hypertension and ischemia/reperfusion injury. EXPERT OPINION: There is emerging evidence that VCAM-1 is more than a biomarker and may be a promising therapeutic target for vascular diseases. While there are neutralizing antibodies that allow preclinical research, the development of pharmacological tools to activate or inhibit this protein are required to thoroughly assess its therapeutic potential.


Assuntos
Aterosclerose , Traumatismo por Reperfusão , Humanos , Molécula 1 de Adesão de Célula Vascular/metabolismo , Molécula 1 de Adesão de Célula Vascular/uso terapêutico , Aterosclerose/tratamento farmacológico , Endotélio Vascular
4.
Front Physiol ; 14: 1327402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38288352

RESUMO

Introduction: Short episodes of ischemia-reperfusion (IR) in the heart (classical ischemic preconditioning, IPC) or in a limb (remote ischemic preconditioning, RIPC) before a prolonged ischemic episode, reduce the size of the infarct. It is unknown whether IPC and RIPC share common mechanisms of protection. Animals KO for NOX2, a superoxide-producing enzyme, or KO for NLRP3, a protein component of inflammasome, are not protected by IPC. The aim of this study was to investigate if NOX2 or NLRP3 inflammasome are involved in the protection induced by RIPC. Methods: We preconditioned rats using 4 × 5 min periods of IR in the limb with or without a NOX2 inhibitor (apocynin) or an NLRP3 inhibitor (Bay117082). In isolated hearts, we measured the infarct size after 30 min of ischemia and 60 min of reperfusion. In hearts from preconditioned rats we measured the activity of NOX2; the mRNA of Nrf2, gamma-glutamylcysteine ligase, glutathione dehydrogenase, thioredoxin reductase and sulfiredoxin by RT-qPCR; the content of glutathione; the activation of the NLRP3 inflammasome and the content of IL-1ß and IL-10 in cardiac tissue. In exosomes isolated from plasma, we quantified NOX2 activity. Results: The infarct size after IR decreased from 40% in controls to 9% of the heart volume after RIPC. This protective effect was lost in the presence of both inhibitors. RIPC increased NOX2 activity in the heart and exosomes, as indicated by the increased association of p47phox to the membrane and by the increased oxidation rate of NADPH. RIPC also increased the mRNA of Nrf2 and antioxidant enzymes. Also, RIPC increased the content of glutathione and the GSH/GSSG ratio. The inflammasome proteins NLRP3, procaspase-1, and caspase-1 were all increased in the hearts of RIPC rats. At the end of RIPC protocol, IL-1ß increased in plasma but decreased in cardiac tissue. At the same time, IL-10 did not change in cardiac tissue but increased by 70% during the next 50 min of perfusion. Conclusion: RIPC activates NOX2 which upregulates the heart's antioxidant defenses and activates the NLRP3 inflammasome which stimulates a cardiac anti-inflammatory response. These changes may underlie the decrease in the infarct size induced by RIPC.

5.
Gastroenterol. latinoam ; 34(2): 66-69, 2023. ilus
Artigo em Espanhol | LILACS | ID: biblio-1524724

RESUMO

Chronic diarrhea is a frequent cause of consultation in daily clinical practice. There are multiple diagnostic algorithms that allow a staggered approach to the most frequent pathologies, leaving out some lesser-known ones. This article reports the case of a 66-year-old female patient with a history of arterial hypertension, dyslipidemia and resected AB thymoma and a history of chronic diarrhea of 8 weeks of evolution. The etiological study ruled out infectious causes, celiac disease and negative viral serology. Due to a history of thymoma, immunoglobulin count was performed, showing severe pan-hypogammaglobulinemia. Good's Syndrome is the combination of thymoma and hypogammaglobulinemia, where patients may present with diarrhea secondary to immunodeficiency. Hypogammaglobulinemia associated with the presence of a thymoma is a rare cause but widely described in the literature as Good's Syndrome. Therefore, it seems relevant to describe a case, its approach and subsequent management.


La diarrea crónica constituye una causa frecuente de consulta en la práctica clínica diaria. Existen múltiples algoritmos diagnósticos que permiten realizar un abordaje escalonado de las patologías más frecuentes y permiten descartar algunas menos conocidas. En el presente artículo se reporta el caso de una paciente de género femenino de 66 años, antecedentes de hipertensión arterial, dislipidemia y timoma AB resecado con historia de diarrea crónica de 8 semanas de evolución. Dentro del estudio etiológico se descartan las causas infecciosas, enfermedad celíaca y serologías virales negativas. Por antecedente de timoma, se realizó recuento de inmunoglobulinas, evidenciando una severa pan-hipogammaglobulinemia. El Síndrome de Good es la combinación de timoma e hipogammaglobulinemia, donde los pacientes podrían presentar diarreas secundarias a inmunodeficiencia. La hipogammaglobulinemia asociada a la presencia de un timoma es una causa poco frecuente pero ampliamente descrita en la literatura como Síndrome de Good. Por lo antes señalado, nos parece relevante describir un caso, su abordaje y manejo posterior.


Assuntos
Humanos , Feminino , Idoso , Timoma/complicações , Neoplasias do Timo/complicações , Diarreia/etiologia , Doença Crônica , Hospedeiro Imunocomprometido
6.
Front Endocrinol (Lausanne) ; 13: 1057349, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465616

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is one of the most complex and most prevalent cardiometabolic diseases in aging population. Age, obesity, diabetes, and hypertension are the main comorbidities of HFpEF. Microvascular dysfunction and vascular remodeling play a major role in its development. Among the many mechanisms involved in this process, vascular stiffening has been described as one the most prevalent during HFpEF, leading to ventricular-vascular uncoupling and mismatches in aged HFpEF patients. Aged blood vessels display an increased number of senescent endothelial cells (ECs) and vascular smooth muscle cells (VSMCs). This is consistent with the fact that EC and cardiomyocyte cell senescence has been reported during HFpEF. Autophagy plays a major role in VSMCs physiology, regulating phenotypic switch between contractile and synthetic phenotypes. It has also been described that autophagy can regulate arterial stiffening and EC and VSMC senescence. Many studies now support the notion that targeting autophagy would help with the treatment of many cardiovascular and metabolic diseases. In this review, we discuss the mechanisms involved in autophagy-mediated vascular senescence and whether this could be a driver in the development and progression of HFpEF.


Assuntos
Insuficiência Cardíaca , Humanos , Células Endoteliais , Volume Sistólico , Autofagia , Miócitos Cardíacos
7.
Front Cell Dev Biol ; 10: 946678, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060801

RESUMO

The complex physiology of eukaryotic cells requires that a variety of subcellular organelles perform unique tasks, even though they form highly dynamic communication networks. In the case of the endoplasmic reticulum (ER) and mitochondria, their functional coupling relies on the physical interaction between their membranes, mediated by domains known as mitochondria-ER contacts (MERCs). MERCs act as shuttles for calcium and lipid transfer between organelles, and for the nucleation of other subcellular processes. Of note, mounting evidence shows that they are heterogeneous structures, which display divergent behaviors depending on the cell type. Furthermore, MERCs are plastic structures that remodel according to intra- and extracellular cues, thereby adjusting the function of both organelles to the cellular needs. In consonance with this notion, the malfunction of MERCs reportedly contributes to the development of several age-related disorders. Here, we integrate current literature to describe how MERCs change, starting from undifferentiated cells, and their transit through specialization, malignant transformation (i.e., dedifferentiation), and aging/senescence. Along this journey, we will review the function of MERCs and their relevance for pivotal cell types, such as stem and cancer cells, cardiac, skeletal, and smooth myocytes, neurons, leukocytes, and hepatocytes, which intervene in the progression of chronic diseases related to age.

8.
J Cell Mol Med ; 26(5): 1710-1713, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35118791

RESUMO

Hypertension is associated with high circulating angiotensin II (Ang II). We have reported that autophagy regulates Ang II-induced vascular smooth muscle cell (VSMC) hypertrophy, but the mechanism mediating this effect is still unknown. Therefore, we studied how Ang II regulates LC3 levels in VSMCs and whether Bag3, a co-chaperone known to regulate LC3 total levels, may be involved in the effects elicited by Ang II. A7r5 cell line or rat aortic smooth muscle cell (RASMC) primary culture were stimulated with Ang II 100 nM for 24 h and LC3 I, LC3 II and Bag3 protein levels were determined by Western blot. MAP1LC3B mRNA levels were assessed by RT-qPCR. Ang II increased MAP1LC3B mRNA levels and protein levels of LC3 I, LC3 II and total LC3 (LC3 I + LC3 II). Cycloheximide, but not actinomycin D, abolished LC3 II and total LC3 increase elicited by Ang II in RASMCs. In A7r5 cells, cycloheximide prevented the Ang II-mediated increase of LC3 I and total LC3, but not LC3 II. Moreover, Ang II increased Bag3 levels, but this increase was not observed upon co-administration with either losartan 1 µM (AT1R antagonist) or Y-27632 10 µM (ROCK inhibitor). These results suggest that Ang II may regulate total LC3 content through transcriptional and translational mechanisms. Moreover, Bag3 is increased in response to Ang II by a AT1R/ROCK signalling pathway. These data provide preliminary evidence suggesting that Ang II may stimulate autophagy in VSMCs by increasing total LC3 content and LC3 processing.


Assuntos
Angiotensina II , Músculo Liso Vascular , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Angiotensina II/metabolismo , Angiotensina II/farmacologia , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Células Cultivadas , Cicloeximida/metabolismo , Cicloeximida/farmacologia , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , RNA Mensageiro/genética , Ratos
9.
Int J Mol Sci ; 24(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36614108

RESUMO

Cardiomyopathy is commonly observed in patients with autosomal dominant polycystic kidney disease (ADPKD), even when they have normal renal function and arterial pressure. The role of cardiomyocyte polycystin-1 (PC1) in cardiovascular pathophysiology remains unknown. PC1 is a potential regulator of BIN1 that maintains T-tubule structure, and alterations in BIN1 expression induce cardiac pathologies. We used a cardiomyocyte-specific PC1-silenced (PC1-KO) mouse model to explore the relevance of cardiomyocyte PC1 in the development of heart failure (HF), considering reduced BIN1 expression induced T-tubule remodeling as a potential mechanism. PC1-KO mice exhibited an impairment of cardiac function, as measured by echocardiography, but no signs of HF until 7-9 months of age. Of the PC1-KO mice, 43% died suddenly at 7 months of age, and 100% died after 9 months with dilated cardiomyopathy. Total BIN1 mRNA, protein levels, and its localization in plasma membrane-enriched fractions decreased in PC1-KO mice. Moreover, the BIN1 + 13 isoform decreased while the BIN1 + 13 + 17 isoform was overexpressed in mice without signs of HF. However, BIN1 + 13 + 17 overexpression was not observed in mice with HF. T-tubule remodeling and BIN1 score measured in plasma samples were associated with decreased PC1-BIN1 expression and HF development. Our results show that decreased PC1 expression in cardiomyocytes induces dilated cardiomyopathy associated with diminished BIN1 expression and T-tubule remodeling. In conclusion, positive modulation of BIN1 expression by PC1 suggests a novel pathway that may be relevant to understanding the pathophysiological mechanisms leading to cardiomyopathy in ADPKD patients.


Assuntos
Cardiomiopatia Dilatada , Insuficiência Cardíaca , Rim Policístico Autossômico Dominante , Canais de Cátion TRPP , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Cardiomiopatia Dilatada/patologia , Insuficiência Cardíaca/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Rim Policístico Autossômico Dominante/genética , Isoformas de Proteínas/metabolismo , Canais de Cátion TRPP/genética , Canais de Cátion TRPP/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
10.
Front Cardiovasc Med ; 8: 770421, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869687

RESUMO

Despite important advances in the treatment of myocardial infarction that have significantly reduced mortality, there is still an unmet need to limit the infarct size after reperfusion injury in order to prevent the onset and severity of heart failure. Multiple cardioprotective maneuvers, therapeutic targets, peptides and drugs have been developed to effectively protect the myocardium from reperfusion-induced cell death in preclinical studies. Nonetheless, the translation of these therapies from laboratory to clinical contexts has been quite challenging. Comorbidities, comedications or inadequate ischemia/reperfusion experimental models are clearly identified variables that need to be accounted for in order to achieve effective cardioprotection studies. The aging heart is characterized by altered proteostasis, DNA instability, epigenetic changes, among others. A vast number of studies has shown that multiple therapeutic strategies, such as ischemic conditioning phenomena and protective drugs are unable to protect the aged heart from myocardial infarction. In this Mini-Review, we will provide an updated state of the art concerning potential new cardioprotective strategies targeting the aging heart.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA