Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(10)2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37242114

RESUMO

The use of nanoparticles (NPs) as reinforcements in polymeric coatings allows for direct interaction with the polymeric chains of the matrix, resulting in a synergistic process through physical (electrostatic forces) and chemical interactions (bond formation) for the improvement of the mechanical properties with relatively low weight concentrations of the NPs. In this investigation, different nanocomposite polymers were synthesized from the crosslinking reaction of the hydroxy-terminated polydimethylsiloxane elastomer. Different concentrations (0, 2, 4, 8, and 10 wt%) of TiO2 and SiO2 nanoparticles synthesized by the sol-gel method were added as reinforcing structures. The crystalline and morphological properties of the nanoparticles were determined through X-ray diffraction (XRD), Raman spectroscopy, and transmission electron microscopy (TEM). The molecular structure of coatings was through infrared spectroscopy (IR). The crosslinking, efficiency, hydrophobicity, and adhesion degree of the study groups were evaluated with gravimetric crosslinking tests, contact angle, and adhesion tests. It was observed that the crosslinking efficiency and surface adhesion properties of the different nanocomposites obtained were maintained. A slight increase in the contact angle was observed for the nanocomposites with 8 wt% compared to the polymer without reinforcements. The mechanical tests of indentation hardness and tensile strength following the ASTM E-384 and ISO 527 standards, respectively, were performed. As the nanoparticle concentration increased, a maximum increase of 157% in Vickers hardness, 71.4% in elastic modulus, and 80% in tensile strength was observed. However, the maximum elongation remained between 60 and 75%, ensuring that the composites did not become brittle.

2.
Materials (Basel) ; 15(13)2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35806844

RESUMO

The stability and mechanical properties of hydroxyapatite (HAp)/Chitosan composite materials depend on the dispersion of HAp aggregates in the chitosan matrix and on the chemical interaction between them. Therefore, hexagonal cross-sectioned HAp nanofibers were produced using a microwave-assisted hydrothermal method. Glutamic acid was used to control the HAp crystal growth; thereby, nanofibers were obtained with a preferential crystalline orientation, and they were grown along the "c" axis of HAp crystal structures. This morphology exposed the (300) and (100) crystal planes on the surface, and several phosphate groups and calcium ions were also exposed; they were able to form numerous chemical interactions with the amine, hydroxyl, and carbonyl groups of chitosan. Consequently, the final mechanical resistance of the composite materials was synergistically increased. Nanofibers were mixed with commercial chitosan using a sonotrode to improve their dispersion within the biopolymer matrix and prevent migration. The HAp nanofiber/Chitosan composite materials showed higher mechanical resistance than that observed in similar materials with the same chemical composition that were made of commercial HAp powders, which were used as reference materials. The mechanical resistance under tension of the composite materials made of nanofibers was similar to that reported for cortical bone.

3.
Materials (Basel) ; 14(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804151

RESUMO

The energy sector is one of the fields of interest for different nations around the world. Due to the current fossil fuel crisis, the scientific community develops new energy-saving experiences to address this concern. Buildings are one of the elements of higher energy consumption, so the generation of knowledge and technological development may offer solutions to this energy demand, which are more than welcome. Phase change materials (PCMs) included in building elements such as wall panels, blocks, panels or coatings, for heating and cooling applications have been shown, when heating, to increase the heat storage capacity by absorbing heat as latent heat. Therefore, the use of latent heat storage systems using phase change materials (PCMs) has been investigated within the last two decades. In the present review, the macro and micro encapsulation methods for construction materials are reviewed, the former being the most viable method of inclusion of PCMs in construction elements. In addition, based on the analysis of the existing papers on the encapsulation process of PCMs, the importance to pay more attention to the bio-based PCMs is shown, since more research is needed to process such PCMs. To determine its thermophysical and mechanical behavior at the micro and macro levels, in order to see the feasibility of substituting petroleum-based PCMs with a more environmentally friendly bio-based one, a section devoted to the excellent PCM with lightweight aggregate (PCM-LWA concrete) is presented due to the lack of description given in other reviews.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA