Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Environ Pollut ; 359: 124513, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39002751

RESUMO

Aquatic biota are exposed to toxic substances resulting from human activities, reducing environmental quality and can compromise the health of the organisms. This study aimed to employ Danio rerio as an environmental bioindicator, analyzing the effects of water from distinct urban aquatic environments. An active biomonitoring system was set up to compare the temporal dynamics of histological biomarkers for gill and liver and the patterns of non-protein thiols (NPSH) in muscle in specimens exposed for 3, 6, and 12 days. Three large urban basins in the city of Campo Grande (Midwest of Brazil) were selected. Two sites are in a very populous area (i.e Lagoa and Bandeira) and another on in an area with agricultural activities (i.e Anhanduí). All the streams displayed distinct qualitative characteristics. The presence of metals, including Mn, Zn, Fe, and Al, as well as pH, temperature, and dissolved oxygen, accounted for 38% of the variability (PC1), while total solids, conductivity, ammonia, nitrite, and explained 24 % (PC2). Degree tissue changes index (DTC) in gill and the concentration of NPSH increased in all streams during 3, 6 and 12 days of exposure. DTC in liver increases in all exposure times in most populous stream (i.e Lagoa and Bandeira). Histopathological evidence in the gill, including proliferation, desquamation, and necrosis of the primary lamellar epithelium; fusion and aneurysms in the secondary lamellar epithelium were observed after three days of exposure. Degenerative nuclear figures were noted in the liver after three days of exposure, followed by hepatocellular hypertrophy, lipidosis, and necrosis at twelve days. Our findings showing time-dependent effects of urban aquatic environments in histopathological (i.e DTC) and biochemical biomarkers in zebrafish. The biomonitoring model enabled a comparison of the temporal dynamics of various health markers, using zebrafish as bioindicator. Future studies might use this experimental model and biomarkers for environmental biomonitoring program.


Assuntos
Monitoramento Biológico , Monitoramento Ambiental , Brânquias , Fígado , Músculos , Rios , Compostos de Sulfidrila , Poluentes Químicos da Água , Peixe-Zebra , Animais , Brânquias/patologia , Brânquias/metabolismo , Fígado/metabolismo , Poluentes Químicos da Água/metabolismo , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Compostos de Sulfidrila/metabolismo , Rios/química , Músculos/química , Músculos/metabolismo , Brasil , Biomarcadores/metabolismo
2.
Drug Chem Toxicol ; : 1-11, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953234

RESUMO

Psychotria carthagenensis is a shrubby plant, often consumed by traditional populations in religious rituals. Previous studies have shown that this plant's infusion can inhibit the activity of Acetylcholinesterase (AChE) in rats. Despite the therapeutic potential, there is a lack of research regarding its possible toxicological and genotoxic effects. Hence, this study aimed to analyze the chemical profile of the ethanol extract from P. carthagenensis leaves by LC-DAD-MS and assess its possible toxicity and genotoxicity in zebrafish (Danio rerio). Adult zebrafish (N = 9/group) were exposed at different concentrations and the LC50 was calculated. Frequencies of micronucleus (MN) and nuclear abnormalities (NA) were estimated for genotoxic effects, and degree of tissue changes (DTC) was used to assess the liver and gill histopathology. From the LC-DAD-MS analyses, the identified compounds included N-fructosyl valine, ethyl hexoside, 5-O-E-caffeoylquinic acid, N-feruloylagmatime, roseoside, di-O-deoxyhexoyl-hexosyl quercetin, loiolide, and oleamide. The calculated values of LC50 did not vary significantly during the time of exposure. At the concentrations of 1.25, 2.5, 3.75, 5, 7.5, 10 and 15 mg/L, there was no genotoxicity, and only low to moderate toxicity for the tissues was observed, despite mortality of 100% at doses of 20-100 mg/L of P. carthagenensis ethanolic leaf extract. There were changes in cytoplasm of hepatocytes at 1.25 mg/L, and karyorrhexis, karyolysis and megalocytosis at 10 mg/L. In the gills, the alterations were primary lamellar hyperplasia in all concentrations, and at 10 mg/L, secondary lamellar edema and vascular hyperemia were common. Additionally, the chemical composition of P. carthagenensis was expanded.

3.
PeerJ ; 11: e16452, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077413

RESUMO

Background: Chloramine-T (CL-T) is a synthetic sodium salt used as a disinfectant in fish farms to combat bacterial infections in fish gills and skin. While its efficacy in pathogen control is well-established, its reactivity with various functional groups has raised concerns. However, limited research exists on the toxicity of disinfection by-products to aquatic organisms. Therefore, this study aims to assess the sublethal effects of CL-T on adult zebrafish by examining biomarkers of nucleus cytotoxicity and genotoxicity, acetylcholinesterase (AChE) inhibition, and histopathological changes. Methods: Male and female adult zebrafish (wildtype AB lineage) specimens were exposed to 70, 140, and 200 mg/L of CL-T and evaluated after 96 h. Cytotoxic and genotoxic effects were evaluated by estimating the frequencies of nuclear abnormalities (NA), micronuclei (MN), and integrated optical density (IOD) of nuclear erythrocytes. Histopathological changes in the gills and liver were assessed using the degree of tissue changes (DTC). AChE activity was measured in brain samples. Results and conclusions: At a concentration of 200 mg/L, NA increased, indicating the cytogenotoxic potential of CL-T in adult zebrafish. Morphological alterations in the nuclei were observed at both 70 and 200 mg/L concentrations. Distinct IOD profiles were identified across the three concentrations. There were no changes in AChE activity in adult zebrafish. The DTC scores were high in all concentrations, and histological alterations suggested low to moderate toxicity of CL-T for adult zebrafish.


Assuntos
Perciformes , Peixe-Zebra , Animais , Masculino , Feminino , Acetilcolinesterase , Cloraminas/toxicidade , Compostos de Tosil
4.
J Toxicol Environ Health A ; : 1-10, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37185102

RESUMO

Chloramine T, a sodium p-toluene sulfonchloramide, is known to possess a wide spectrum of biocidal activity and is employed as a disinfectant in fish farms to treat bacterial infections. Although Chloramine T may effectively combat pathogens, the sublethal and lethal effects and changes in acetylcholinesterase (AChE) activity remain poorly elucidated using Danio rerio (zebrafish) embryos. Zebrafish is considered a model organism for toxicant screening research and exhibits mammalian-like physiological responses when exposed to environmental pollutants. The aim of this study was to (1) determine LC50 of Chloramine T after 96 hr exposure, (2) verify disinfectant effects on developmental morphology, and (3) evaluate the disinfectant effects on AChE activity in zebrafish embryos. Chloramine T exposure was performed using 16, 32, 64, 128, or 256 mg/L concentrations. The mortality LC50 values were 143.05 ± 3.11 and 130.97 ± 7.4 mg/L at 24 and 96 hr, respectively. Data demonstrated delayed hatching, reduced heartbeats, cardiac edema, and equilibrium disruption of hatched larvae throughout embryonic development. In addition, Chloramine T inhibited AChE activity at 64 or 128 mg/L after 96 hr treatment, corroborating the sub-lethality results observed in zebrafish embryo development and demonstrating an equilibrium disruption in zebrafish larvae.

5.
Artigo em Inglês | MEDLINE | ID: mdl-32654587

RESUMO

The 17 alpha methyltestosterone (MT) hormone is fed to Oreochromis niloticus larvae in fish farms with the purpose of inducing sex reversal. The aim of this study was to evaluate the toxicity and sub-lethality of MT (99.9% purity) and cMT (a commercial MT with 90% purity) in zebrafish (Danio rerio) adults, where the animals were exposed to concentrations of 0, 4, 23, 139, 833 and 5000 µg/L for 96 hours. Genotoxicity was evaluated by micronucleus test (MN), nuclear abnormalities (NA) and comet assay. A low genotoxic potential of MT was showed, inducing micronucleus, nuclear abnormalities and DNA damage in Danio rerio, depending on the use of MT or cMT, gender and tested concentrations. In the sub-lethality trials, there was a basal difference in the activity of the enzymatic biochemical markers for males and females, while the Glutatione S transferase (GST) activity decreased in all analyzed tissues, and for males the enzymatic activity decreased only in the intestine. Results suggest that MT has a toxic potential to fish because it alters enzymatic metabolic pathways and may pose a risk to the ecosystems.


Assuntos
Androgênios/toxicidade , Dano ao DNA , Metiltestosterona/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética , Androgênios/farmacologia , Animais , Ciclídeos/crescimento & desenvolvimento , Ensaio Cometa , Relação Dose-Resposta a Droga , Ecossistema , Feminino , Pesqueiros , Larva/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Masculino , Metiltestosterona/farmacologia , Poluentes Químicos da Água/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA