Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Glia ; 69(4): 1012-1021, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277953

RESUMO

The acute rise in interstitial K+ that accompanies neural activity couples the energy demand of neurons to the metabolism of astrocytes. The effects of elevated K+ on astrocytes include activation of aerobic glycolysis, inhibition of mitochondrial respiration and the release of lactate. Using a genetically encoded FRET glucose sensor and a novel protocol based on 3-O-methylglucose trans-acceleration and numerical simulation of glucose dynamics, we report that extracellular K+ is also a potent and reversible modulator of the astrocytic glucose transporter GLUT1. In cultured mouse astrocytes, the stimulatory effect developed within seconds, engaged both the influx and efflux modes of the transporter, and was detected even at 1 mM incremental K+ . The modulation of GLUT1 explains how astrocytes are able to maintain their glucose pool in the face of strong glycolysis stimulation. We propose that the stimulation of GLUT1 by K+ supports the production of lactate by astrocytes and the timely delivery of glucose to active neurons.


Assuntos
Astrócitos , Glicólise , Animais , Glucose , Transportador de Glucose Tipo 1/genética , Ácido Láctico , Camundongos
2.
Proc Natl Acad Sci U S A ; 115(7): 1623-1628, 2018 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-29378955

RESUMO

Aerobic glycolysis is a phenomenon that in the long term contributes to synaptic formation and growth, is reduced by normal aging, and correlates with amyloid beta deposition. Aerobic glycolysis starts within seconds of neural activity and it is not obvious why energetic efficiency should be compromised precisely when energy demand is highest. Using genetically encoded FRET nanosensors and real-time oxygen measurements in culture and in hippocampal slices, we show here that astrocytes respond to physiological extracellular K+ with an acute rise in cytosolic ATP and a parallel inhibition of oxygen consumption, explained by glycolytic stimulation via the Na+-bicarbonate cotransporter NBCe1. This control of mitochondrial respiration via glycolysis modulation is reminiscent of a phenomenon previously described in proliferating cells, known as the Crabtree effect. Fast brain aerobic glycolysis may be interpreted as a strategy whereby neurons manipulate neighboring astrocytes to obtain oxygen, thus maximizing information processing.


Assuntos
Astrócitos/fisiologia , Glicólise/fisiologia , Hipocampo/fisiologia , Mitocôndrias/fisiologia , Neurônios/fisiologia , Consumo de Oxigênio , Animais , Astrócitos/citologia , Células Cultivadas , Metabolismo Energético , Hipocampo/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Neurônios/citologia , Simportadores de Sódio-Bicarbonato/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA