Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. microbiol ; 47(supl.1): 03-30, Oct.-Dec. 2016.
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1469632

RESUMO

Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.


Assuntos
Diarreia/diagnóstico , Diarreia/epidemiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia
2.
Braz. j. microbiol ; 47(supl.1): 3-30, Oct.-Dec. 2016.
Artigo em Inglês | LILACS | ID: biblio-839325

RESUMO

ABSTRACT Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.


Assuntos
Humanos , Diarreia/diagnóstico , Diarreia/microbiologia , Escherichia coli/classificação , Escherichia coli/fisiologia , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Prevalência , Fatores de Virulência/genética , Diarreia/epidemiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia
3.
Braz. J. Microbiol. ; 47(supl.1): 03-30, Dez. 2016.
Artigo em Inglês | VETINDEX | ID: vti-24833

RESUMO

Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.(AU)


Assuntos
Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Diarreia/diagnóstico , Diarreia/epidemiologia
4.
Braz J Microbiol ; 47 Suppl 1: 3-30, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27866935

RESUMO

Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.


Assuntos
Diarreia/diagnóstico , Diarreia/microbiologia , Infecções por Escherichia coli/diagnóstico , Infecções por Escherichia coli/microbiologia , Escherichia coli/classificação , Escherichia coli/fisiologia , Diarreia/epidemiologia , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Humanos , Prevalência , Fatores de Virulência/genética
5.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469620

RESUMO

ABSTRACT Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

6.
Infect Immun ; 83(12): 4555-64, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26371126

RESUMO

Globally, enterotoxigenic Escherichia coli (ETEC) is a leading cause of childhood and travelers' diarrhea, for which an effective vaccine is needed. Prevalent intestinal colonization factors (CFs) such as CFA/I fimbriae and heat-labile enterotoxin (LT) are important virulence factors and protective antigens. We tested the hypothesis that donor strand-complemented CfaE (dscCfaE), a stabilized form of the CFA/I fimbrial tip adhesin, is a protective antigen, using a lethal neonatal mouse ETEC challenge model and passive dam vaccination. For CFA/I-ETEC strain H10407, which has been extensively studied in volunteers, an inoculum of 2 × 10(7) bacteria resulted in 50% lethal doses (LD50) in neonatal DBA/2 mice. Vaccination of female DBA/2 mice with CFA/I fimbriae or dscCfaE, each given with a genetically attenuated LT adjuvant (LTK63) by intranasal or orogastric delivery, induced high antigen-specific serum IgG and fecal IgA titers and detectable milk IgA responses. Neonates born to and suckled by dams antenatally vaccinated with each of these four regimens showed 78 to 93% survival after a 20× LD50 challenge with H10407, compared to 100% mortality in pups from dams vaccinated with sham vaccine or LTK63 only. Crossover experiments showed that high pup survival rates after ETEC challenge were associated with suckling but not birthing from vaccinated dams, suggesting that vaccine-specific milk antibodies are protective. In corroboration, preincubation of the ETEC inoculum with antiadhesin and antifimbrial bovine colostral antibodies conferred a dose-dependent increase in pup survival after challenge. These findings indicate that the dscCfaE fimbrial tip adhesin serves as a protective passive vaccine antigen in this small animal model and merits further evaluation.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/biossíntese , Escherichia coli Enterotoxigênica/imunologia , Infecções por Escherichia coli/prevenção & controle , Proteínas de Escherichia coli/imunologia , Proteínas de Fímbrias/imunologia , Leite/imunologia , Adesinas Bacterianas/administração & dosagem , Adesinas Bacterianas/genética , Animais , Bovinos , Relação Dose-Resposta Imunológica , Escherichia coli Enterotoxigênica/efeitos dos fármacos , Escherichia coli Enterotoxigênica/genética , Infecções por Escherichia coli/genética , Infecções por Escherichia coli/imunologia , Infecções por Escherichia coli/mortalidade , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/genética , Vacinas contra Escherichia coli/administração & dosagem , Vacinas contra Escherichia coli/genética , Vacinas contra Escherichia coli/imunologia , Feminino , Proteínas de Fímbrias/administração & dosagem , Proteínas de Fímbrias/genética , Fímbrias Bacterianas/química , Fímbrias Bacterianas/imunologia , Expressão Gênica , Soros Imunes/química , Imunização Passiva , Imunoglobulina A/biossíntese , Imunoglobulina G/biossíntese , Camundongos , Camundongos Endogâmicos DBA , Leite/química , Gravidez , Análise de Sobrevida , Vacinas Atenuadas
7.
Infect Immun ; 82(12): 4978-88, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25225243

RESUMO

Streptococcus mutans is a major etiologic agent of dental caries, a prevalent worldwide infectious disease and a serious public health concern. The surface-localized S. mutans P1 adhesin contributes to tooth colonization and caries formation. P1 is a large (185-kDa) and complex multidomain protein considered a promising target antigen for anticaries vaccines. Previous observations showed that a recombinant P1 fragment (P1(39-512)), produced in Bacillus subtilis and encompassing a functional domain, induces antibodies that recognize the native protein and interfere with S. mutans adhesion in vitro. In the present study, we further investigated the immunological features of P1(39-512) in combination with the following different adjuvants after parenteral administration to mice: alum, a derivative of the heat-labile toxin (LT), and the phase 1 flagellin of S. Typhimurium LT2 (FliCi). Our results demonstrated that recombinant P1(39-512) preserves relevant conformational epitopes as well as salivary agglutinin (SAG)-binding activity. Coadministration of adjuvants enhanced anti-P1 serum antibody responses and affected both epitope specificity and immunoglobulin subclass switching. Importantly, P1(39-512)-specific antibodies raised in mice immunized with adjuvants showed significantly increased inhibition of S. mutans adhesion to SAG, with less of an effect on SAG-mediated bacterial aggregation, an innate defense mechanism. Oral colonization of mice by S. mutans was impaired in the presence of anti-P1(39-512) antibodies, particularly those raised in combination with adjuvants. In conclusion, our results confirm the utility of P1(39-512) as a potential candidate for the development of anticaries vaccines and as a tool for functional studies of S. mutans P1.


Assuntos
Adesinas Bacterianas/imunologia , Anticorpos Antibacterianos/imunologia , Cárie Dentária/prevenção & controle , Proteínas de Membrana/imunologia , Infecções Estreptocócicas/prevenção & controle , Vacinas Estreptocócicas/imunologia , Streptococcus mutans/imunologia , Adesinas Bacterianas/genética , Adjuvantes Imunológicos/administração & dosagem , Aglutininas/metabolismo , Animais , Anticorpos Antibacterianos/sangue , Bacillus subtilis/genética , Aderência Bacteriana , Cárie Dentária/imunologia , Feminino , Proteínas de Membrana/genética , Camundongos Endogâmicos BALB C , Boca/microbiologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Saliva/metabolismo , Infecções Estreptocócicas/imunologia , Vacinas Estreptocócicas/administração & dosagem , Vacinas Estreptocócicas/genética , Streptococcus mutans/genética , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/genética , Vacinas Sintéticas/imunologia
8.
Front Immunol ; 4: 487, 2014 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-24432018

RESUMO

Native type I heat-labile toxins (LTs) produced by enterotoxigenic Escherichia coli (ETEC) strains exert strong adjuvant effects on both antibody and T cell responses to soluble and particulate antigens following co-administration via mucosal routes. However, inherent enterotoxicity and neurotoxicity (following intra-nasal delivery) had reduced the interest in the use of these toxins as mucosal adjuvants. LTs can also behave as powerful and safe adjuvants following delivery via parenteral routes, particularly for activation of cytotoxic lymphocytes. In the present study, we evaluated the adjuvant effects of a new natural LT polymorphic form (LT2), after delivery via intradermal (i.d.) and subcutaneous (s.c.) routes, with regard to both antibody and T cell responses. A recombinant HIV-1 p24 protein was employed as a model antigen for determination of antigen-specific immune responses while the reference LT (LT1), produced by the ETEC H10407 strain, and a non-toxigenic LT form (LTK63) were employed as previously characterized LT types. LT-treated mice submitted to a four dose-base immunization regimen elicited similar p24-specific serum IgG responses and CD4(+) T cell activation. Nonetheless, mice immunized with LT1 or LT2 induced higher numbers of antigen-specific CD8(+) T cells and in vivo cytotoxic responses compared to mice immunized with the non-toxic LT derivative. These effects were correlated with stronger activation of local dendritic cell populations. In addition, mice immunized with LT1 and LT2, but not with LTK63, via s.c. or i.d. routes developed local inflammatory reactions. Altogether, the present results confirmed that the two most prevalent natural polymorphic LT variants (LT1 or LT2) display similar and strong adjuvant effects for subunit vaccines administered via i.d. or s.c. routes.

9.
Clin Vaccine Immunol ; 18(8): 1243-51, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21677110

RESUMO

The type I and type II heat-labile enterotoxins (LT-I and LT-II) are strong mucosal adjuvants when they are coadministered with soluble antigens. Nonetheless, data on the parenteral adjuvant activities of LT-II are still limited. Particularly, no previous study has evaluated the adjuvant effects and induced inflammatory reactions of LT-II holotoxins or their B pentameric subunits after delivery via the intradermal (i.d.) route to mice. In the present report, the adjuvant and local skin inflammatory effects of LT-IIa and its B subunit pentamer (LT-IIaB(5)) were determined. When coadministered with ovalbumin (OVA), LT-IIa and, to a lesser extent, LT-IIaB(5) exhibited serum IgG adjuvant effects. In addition, LT-IIa but not LT-IIaB(5) induced T cell-specific anti-OVA responses, particularly in respect to induction of antigen-specific cytotoxic CD8(+) T cell responses. LT-IIa and LT-IIaB(5) induced differential tissue permeability and local inflammatory reactions after i.d. injection. Of particular interest was the reduced or complete lack of local reactions, such as edema and tissue induration, in mice i.d. inoculated with LT-IIa and LT-IIaB(5,) respectively, compared with mice immunized with LT-I. In conclusion, the present results show that LT-IIa and, to a lesser extent, LT-IIaB(5) exert adjuvant effects when they are delivered via the i.d. route. In addition, the low inflammatory effects of LT-IIa and LT-IIaB(5) in comparison to those of LT-I support the usefulness of LT-IIa and LT-IIaB(5) as parenterally delivered vaccine adjuvants.


Assuntos
Adjuvantes Imunológicos/administração & dosagem , Toxinas Bacterianas/administração & dosagem , Toxinas Bacterianas/imunologia , Enterotoxinas/administração & dosagem , Enterotoxinas/imunologia , Proteínas de Escherichia coli/administração & dosagem , Proteínas de Escherichia coli/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Adjuvantes Imunológicos/toxicidade , Animais , Toxinas Bacterianas/toxicidade , Linfócitos T CD8-Positivos/imunologia , Enterotoxinas/toxicidade , Proteínas de Escherichia coli/toxicidade , Feminino , Imunoglobulina G/sangue , Inflamação/patologia , Injeções Intradérmicas , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina/administração & dosagem , Ovalbumina/imunologia , Linfócitos T Citotóxicos/imunologia
10.
J Biol Chem ; 286(7): 5222-33, 2011 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-21135101

RESUMO

Heat-labile toxins (LTs) have ADP-ribosylation activity and induce the secretory diarrhea caused by enterotoxigenic Escherichia coli (ETEC) strains in different mammalian hosts. LTs also act as adjuvants following delivery via mucosal, parenteral, or transcutaneous routes. Previously we have shown that LT produced by human-derived ETEC strains encompass a group of 16 polymorphic variants, including the reference toxin (LT1 or hLT) produced by the H10407 strain and one variant that is found mainly among bacterial strains isolated from pigs (LT4 or pLT). Herein, we show that LT4 (with six polymorphic sites in the A (K4R, K213E, and N238D) and B (S4T, A46E, and E102K) subunits) displays differential in vitro toxicity and in vivo adjuvant activities compared with LT1. One in vitro generated LT mutant (LTK4R), in which the lysine at position 4 of the A subunit was replaced by arginine, showed most of the LT4 features with an ∼10-fold reduction of the cytotonic effects, ADP-ribosylation activity, and accumulation of intracellular cAMP in Y1 cells. Molecular dynamic studies of the A subunit showed that the K4R replacement reduces the N-terminal region flexibility and decreases the catalytic site crevice. Noticeably, LT4 showed a stronger Th1-biased adjuvant activity with regard to LT1, particularly concerning activation of cytotoxic CD8(+) T lymphocytes when delivered via the intranasal route. Our results further emphasize the relevance of LT polymorphism among human-derived ETEC strains that may impact both the pathogenicity of the bacterial strain and the use of these toxins as potential vaccine adjuvants.


Assuntos
Toxinas Bacterianas/metabolismo , Escherichia coli Enterotoxigênica/metabolismo , Enterotoxinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Adjuvantes Imunológicos/genética , Adjuvantes Imunológicos/metabolismo , Substituição de Aminoácidos , Animais , Toxinas Bacterianas/genética , Toxinas Bacterianas/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , AMP Cíclico/genética , AMP Cíclico/imunologia , AMP Cíclico/metabolismo , Escherichia coli Enterotoxigênica/imunologia , Escherichia coli Enterotoxigênica/patogenicidade , Enterotoxinas/genética , Enterotoxinas/imunologia , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/imunologia , Feminino , Humanos , Camundongos , Mutação de Sentido Incorreto , Polimorfismo Genético , Especificidade da Espécie , Suínos , Células Th1/imunologia , Células Th1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA