Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Braz. j. med. biol. res ; 47(8): 679-688, 08/2014. graf
Artigo em Inglês | LILACS | ID: lil-716278

RESUMO

There is evidence that brain temperature (Tbrain) provides a more sensitive index than other core body temperatures in determining physical performance. However, no study has addressed whether the association between performance and increases in Tbrain in a temperate environment is dependent upon exercise intensity, and this was the primary aim of the present study. Adult male Wistar rats were subjected to constant exercise at three different speeds (18, 21, and 24 m/min) until the onset of volitional fatigue. Tbrain was continuously measured by a thermistor inserted through a brain guide cannula. Exercise induced a speed-dependent increase in Tbrain, with the fastest speed associated with a higher rate of Tbrain increase. Rats subjected to constant exercise had similar Tbrain values at the time of fatigue, although a pronounced individual variability was observed (38.7-41.7°C). There were negative correlations between the rate of Tbrain increase and performance for all speeds that were studied. These results indicate that performance during constant exercise is negatively associated with the increase in Tbrain, particularly with its rate of increase. We then investigated how an incremental-speed protocol affected the association between the increase in Tbrain and performance. At volitional fatigue, Tbrain was lower during incremental exercise compared with the Tbrain resulting from constant exercise (39.3±0.3 vs 40.3±0.1°C; P<0.05), and no association between the rate of Tbrain increase and performance was observed. These findings suggest that the influence of Tbrain on performance under temperate conditions is dependent on exercise protocol.


Assuntos
Animais , Masculino , Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Ambiente Controlado , Fadiga/fisiopatologia , Condicionamento Físico Animal/fisiologia , Esforço Físico/fisiologia , Regulação da Temperatura Corporal/fisiologia , Encéfalo/anatomia & histologia , Teste de Esforço , Condicionamento Físico Animal/métodos , Ratos Wistar , Estatística como Assunto , Volição/fisiologia
2.
Braz J Med Biol Res ; 47(8): 679-88, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25003543

RESUMO

There is evidence that brain temperature (T brain) provides a more sensitive index than other core body temperatures in determining physical performance. However, no study has addressed whether the association between performance and increases in T brain in a temperate environment is dependent upon exercise intensity, and this was the primary aim of the present study. Adult male Wistar rats were subjected to constant exercise at three different speeds (18, 21, and 24 m/min) until the onset of volitional fatigue. T brain was continuously measured by a thermistor inserted through a brain guide cannula. Exercise induced a speed-dependent increase in T brain, with the fastest speed associated with a higher rate of T brain increase. Rats subjected to constant exercise had similar T brain values at the time of fatigue, although a pronounced individual variability was observed (38.7-41.7°C). There were negative correlations between the rate of T brain increase and performance for all speeds that were studied. These results indicate that performance during constant exercise is negatively associated with the increase in T brain, particularly with its rate of increase. We then investigated how an incremental-speed protocol affected the association between the increase in T brain and performance. At volitional fatigue, T brain was lower during incremental exercise compared with the T brain resulting from constant exercise (39.3 ± 0.3 vs 40.3 ± 0.1°C; P<0.05), and no association between the rate of T brain increase and performance was observed. These findings suggest that the influence of T brain on performance under temperate conditions is dependent on exercise protocol.


Assuntos
Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Ambiente Controlado , Fadiga/fisiopatologia , Condicionamento Físico Animal/fisiologia , Esforço Físico/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Encéfalo/anatomia & histologia , Teste de Esforço , Masculino , Condicionamento Físico Animal/métodos , Ratos Wistar , Estatística como Assunto , Volição/fisiologia
3.
Scand J Med Sci Sports ; 23(1): 46-56, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21672029

RESUMO

We investigated brain mechanisms modulating fatigue during prolonged physical exercise in cold environments. In a first set of studies, each rat was subjected to three running trials in different ambient temperatures (T(a)). At 8 °C and 15 °C, core body temperature (T(core)) decreased and increased, respectively, whereas at 12 °C, the T(core) did not change throughout the exercise. In another set of experiments, rats were randomly assigned to receive bilateral 0.2 µL injections of 2.5 × 10(-2) M methylatropine or 0.15 M NaCl solution into the ventromedial hypothalamic nuclei (VMH). Immediately after the injections, treadmill exercise was started. Each animal was subjected to two experimental trials at one of the following T(a) : 5 °C, 12 °C or 15 °C. Muscarinic blockade of the VMH reduced the time to fatigue (TF) in cold environments by 35-37%. In all T(a) studied, methylatropine-treated rats did not present alterations in T(core) and tail skin temperature compared with controls. These results indicate that, below the zone of thermoneutrality, muscarinic blockade of the VMH decreases the TF, independent of changes in T(core). In conclusion, our data suggest that VMH muscarinic transmission modulates physical performance, even when the effects of thermoregulatory adjustments on fatigue are minimal.


Assuntos
Regulação da Temperatura Corporal/efeitos dos fármacos , Temperatura Baixa , Hipotálamo Médio/efeitos dos fármacos , Esforço Físico/efeitos dos fármacos , Receptores Muscarínicos/fisiologia , Animais , Regulação da Temperatura Corporal/fisiologia , Hipotálamo Médio/fisiologia , Masculino , Fadiga Muscular/efeitos dos fármacos , Esforço Físico/fisiologia , Ratos , Ratos Wistar , Receptores Muscarínicos/administração & dosagem , Corrida/fisiologia
4.
Int J Sports Med ; 31(11): 779-83, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20683812

RESUMO

The purpose of this study was to evaluate the effects of human head hair on thermoregulation during exercise carried out under solar radiation. 10 healthy male subjects (mean±SD: 25.1±2.5 yr; height: 176.2±4.0 cm; weight: 73.7±6.7 kg; VO(2max) 56.2±5.3 mLO(2)·kg (-1)·min (-1)) took part in 2 1 h-long trials of continuous exercise on a treadmill at 50% VO2(max) under solar radiation that were separated by at least 2 days. Whereas for the first trial they retained their natural head hair (HAIR), in the second trial their hair was totally shaved (NOHAIR). Several properties were measured, including environmental heat stress (Wet Bulb Globe Temperature index - WBGT, °C), heart rate, rectal temperature, skin temperature, head temperature, and global sweat rate. The main findings were that whereas there was a lower sweat rate in the HAIR condition (HAIR: 7.08±0.79 vs. NOHAIR: 7.67±0.79 g·m (-2)·min (-1); p=0.03), there were no significant differences in any of the other variables between the HAIR and NOHAIR trials. In conclusion, the presence of head hair resulted in a lower sweat rate.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Exercício Físico/fisiologia , Cabelo/fisiologia , Sudorese/fisiologia , Adulto , Teste de Esforço , Cabeça , Humanos , Masculino , Corrida , Luz Solar , Adulto Jovem
5.
Artigo em Inglês | MEDLINE | ID: mdl-19240363

RESUMO

OBJECTIVES: To measure muscular force in neurofibromatosis type 1 (NF1) patients. METHODS: The maximal voluntary muscular force (F(max)) was measured in the first 21 volunteer patients without acute health problems at the routine annual examination in the Neurofibromatosis Outpatient Reference Center during October-November (2007). The NF1 individuals were 9 males and 12 females, aged from 7 to 60 years and physically sedentary. The healthy control group was 21 healthy subjects matched to NF1 group by age, sex and physical activity. A handgrip test instrument was used to measure maximal force. To allow comparisons between physically different patients, forearm circumference (cm) was measured with a tape and forearm cross sectional area was derived to express the force per unit of forearm area. Data were compared using a t Student test (P<0.05). RESULTS: The mean F(max) of NF1 male (260-/+136 N) and NF1 female (217-/+76 N) were lower than expected for their sex and age. Healthy men showed greater F(area) (9.8-/+3.2 N x cm(-2)) than NF1 men (5.7-/+2.6 N x cm(-2)) and healthy women (6.7-/+1.6 N x cm(-2)) showed greater F(area) than NF1 females (5.7-/+1.9 N x cm(-2)). CONCLUSION: Maximal voluntary muscle force was reduced in NF1 patients.


Assuntos
Força Muscular , Músculo Esquelético/fisiopatologia , Neurofibromatose 1/fisiopatologia , Adolescente , Adulto , Anatomia Transversal , Criança , Feminino , Antebraço/anatomia & histologia , Força da Mão , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
6.
J Physiol Pharmacol ; 58(1): 3-17, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17440222

RESUMO

The aim of this study was to evaluate the effects of the stimulation of central cholinergic synapses in the regulation of heat loss in untrained rats during exercise. The animals were separated into two groups (exercise or rest) and tail skin temperature (T(tail)), core temperature and blood pressure were measured after injection of 2 microL of 5x10(-3) M physostigmine (Phy; n = 8) or 0.15 M NaCl solution (Sal; n = 8) into the lateral cerebral ventricle. Blood pressure was recorded by a catheter implanted into the abdominal aorta, T(tail) was measured using a thermistor taped to the tail and intraperitoneal temperature (T(b)) was recorded by telemetry. During exercise, Phy-treated rats had a higher increase in mean blood pressure (147 +/- 4 mmHg Phy vs. 121 +/- 3 mmHg Sal; P < 0.001) and higher T(tail) (26.4 +/- 1.0 degrees C Phy vs. 23.8 +/- 0.5 degrees C Sal; P < 0.05) that was closely related to the increase in systolic arterial pressure (r = 0.83; P < 0.001). In addition, Phy injection attenuated the exercise-induced increase in T(b) compared with controls without affecting running time. We conclude that the activation of central cholinergic synapses during exercise increases heat dissipation due to the higher increase in blood pressure.


Assuntos
Pressão Sanguínea/efeitos dos fármacos , Regulação da Temperatura Corporal/efeitos dos fármacos , Inibidores da Colinesterase/farmacologia , Esforço Físico/fisiologia , Fisostigmina/farmacologia , Corrida , Acetilcolina/metabolismo , Animais , Área Sob a Curva , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Inibidores da Colinesterase/administração & dosagem , Injeções Intraventriculares , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Condicionamento Físico Animal , Fisostigmina/administração & dosagem , Ratos , Ratos Wistar , Temperatura Cutânea/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos , Telemetria , Fatores de Tempo
7.
Braz J Med Biol Res ; 39(9): 1255-61, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16981051

RESUMO

The present study evaluated whether the luteal phase elevation of body temperature would be offset during exercise by increased sweating, when women are normally hydrated. Eleven women performed 60 min of cycling exercise at 60% of their maximal work load at 32 degrees C and 80% relative air humidity. Each subject participated in two identical experimental sessions: one during the follicular phase (between days 5 and 8) and the other during the luteal phase (between days 22 and 25). Women with serum progesterone >3 ng/mL, in the luteal phase were classified as group 1 (N = 4), whereas the others were classified as group 2 (N = 7). Post-exercise urine volume (213 +/- 80 vs 309 +/- 113 mL) and specific urine gravity (1.008 +/- 0.003 vs 1.006 +/- 0.002) changed (P < 0.05) during the luteal phase compared to the follicular phase in group 1. No menstrual cycle dependence was observed for these parameters in group 2. Sweat rate was higher (P < 0.05) in the luteal (3.10 +/- 0.81 g m-2 min-1) than in the follicular phase (2.80 +/- 0.64 g m(-2) min(-1)) only in group 1. During exercise, no differences related to menstrual cycle phases were seen in rectal temperature, heart rate, rate of perceived exertion, mean skin temperature, and pre- and post-exercise body weight. Women exercising in a warm and humid environment with water intake seem to be able to adapt to the luteal phase increase of basal body temperature through reduced urinary volume and increased sweating rate.


Assuntos
Exercício Físico/fisiologia , Fase Folicular/fisiologia , Fase Luteal/fisiologia , Progesterona/sangue , Sudorese/fisiologia , Adulto , Temperatura Corporal , Feminino , Fase Folicular/sangue , Humanos , Fase Luteal/sangue
8.
Braz. j. med. biol. res ; 39(9): 1255-1261, Sept. 2006.
Artigo em Inglês | LILACS | ID: lil-435424

RESUMO

The present study evaluated whether the luteal phase elevation of body temperature would be offset during exercise by increased sweating, when women are normally hydrated. Eleven women performed 60 min of cycling exercise at 60 percent of their maximal work load at 32°C and 80 percent relative air humidity. Each subject participated in two identical experimental sessions: one during the follicular phase (between days 5 and 8) and the other during the luteal phase (between days 22 and 25). Women with serum progesterone >3 ng/mL, in the luteal phase were classified as group 1 (N = 4), whereas the others were classified as group 2 (N = 7). Post-exercise urine volume (213 ± 80 vs 309 ± 113 mL) and specific urine gravity (1.008 ± 0.003 vs 1.006 ± 0.002) changed (P < 0.05) during the luteal phase compared to the follicular phase in group 1. No menstrual cycle dependence was observed for these parameters in group 2. Sweat rate was higher (P < 0.05) in the luteal (3.10 ± 0.81 g m-2 min-1) than in the follicular phase (2.80 ± 0.64 g m-2 min-1) only in group 1. During exercise, no differences related to menstrual cycle phases were seen in rectal temperature, heart rate, rate of perceived exertion, mean skin temperature, and pre- and post-exercise body weight. Women exercising in a warm and humid environment with water intake seem to be able to adapt to the luteal phase increase of basal body temperature through reduced urinary volume and increased sweating rate.


Assuntos
Humanos , Feminino , Adulto , Exercício Físico/fisiologia , Fase Folicular/fisiologia , Fase Luteal/fisiologia , Progesterona/sangue , Sudorese/fisiologia , Temperatura Corporal , Fase Folicular/sangue , Fase Luteal/sangue
9.
Braz J Med Biol Res ; 38(7): 1133-9, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16007285

RESUMO

Centrally stimulated sweat rate produced by graded exercise until exhaustion was compared to the local sweat rate induced by pilocarpine, often used as a sweating index for healthy individuals. Nine young male volunteers (22 +/- 4 years) were studied in temperate environment in two situations: at rest and during progressive exercise with 25 W increases every 2 min until exhaustion, on a cycle ergometer. In both situations, sweating was induced on the right forearm with 5 ml 0.5% pilocarpine hydrochloride applied by iontophoresis (1.5 mA, 5 min), with left forearm used as control. Local sweat rate was measured for 15 min at rest. During exercise, whole-body sweat rate was calculated from the body weight variation. Local sweat rate was measured from the time when heart rate reached 150 bpm until exhaustion and was collected using absorbent filter paper. Pharmacologically induced local sweat rate at rest (0.4 +/- 0.2 mg cm-2 min-1) and mean exercise-induced whole-body sweat rate (0.4 +/- 0.1 mg cm-2 min-1) were the same (P > 0.05) but were about five times smaller than local exercise-induced sweat rate (control = 2.1 +/- 1.4; pilocarpine = 2.7 +/- 1.2 mg cm-2 min-1), indicating different sudorific mechanisms. Both exercise-induced whole-body sweat rate (P < 0.05) and local sweat rate (P < 0.05) on control forearm correlated positively with pilocarpine-induced local sweat rate at rest. Assuming that exercise-induced sweating was a result of integrated physiological mechanisms, we suggest that local and whole-body sweat rate measured during graded exercise could be a better sweating index than pilocarpine.


Assuntos
Exercício Físico/fisiologia , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Sudorese/efeitos dos fármacos , Adulto , Análise de Variância , Regulação da Temperatura Corporal/fisiologia , Humanos , Iontoforese , Masculino , Sudorese/fisiologia
10.
Braz. j. med. biol. res ; 38(7)July 2005. ilus
Artigo em Inglês | LILACS | ID: lil-403869

RESUMO

Centrally stimulated sweat rate produced by graded exercise until exhaustion was compared to the local sweat rate induced by pilocarpine, often used as a sweating index for healthy individuals. Nine young male volunteers (22 ± 4 years) were studied in temperate environment in two situations: at rest and during progressive exercise with 25 W increases every 2 min until exhaustion, on a cycle ergometer. In both situations, sweating was induced on the right forearm with 5 ml 0.5 percent pilocarpine hydrochloride applied by iontophoresis (1.5 mA, 5 min), with left forearm used as control. Local sweat rate was measured for 15 min at rest. During exercise, whole-body sweat rate was calculated from the body weight variation. Local sweat rate was measured from the time when heart rate reached 150 bpm until exhaustion and was collected using absorbent filter paper. Pharmacologically induced local sweat rate at rest (0.4 ± 0.2 mg cm-2 min-1) and mean exercise-induced whole-body sweat rate (0.4 ± 0.1 mg cm-2 min-1) were the same (P > 0.05) but were about five times smaller than local exercise-induced sweat rate (control = 2.1 ± 1.4; pilocarpine = 2.7 ± 1.2 mg cm-2 min-1), indicating different sudorific mechanisms. Both exercise-induced whole-body sweat rate (P < 0.05) and local sweat rate (P < 0.05) on control forearm correlated positively with pilocarpine-induced local sweat rate at rest. Assuming that exercise-induced sweating was a result of integrated physiological mechanisms, we suggest that local and whole-body sweat rate measured during graded exercise could be a better sweating index than pilocarpine.


Assuntos
Adulto , Humanos , Masculino , Exercício Físico/fisiologia , Agonistas Muscarínicos/farmacologia , Pilocarpina/farmacologia , Sudorese/efeitos dos fármacos , Análise de Variância , Regulação da Temperatura Corporal/fisiologia , Iontoforese , Sudorese/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA