Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 14781, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093454

RESUMO

Intracellular peptides generated by limited proteolysis are likely to function inside and outside cells and could represent new possibilities for drug development. Here, we used several conformational-sensitive antibodies targeting G-protein coupled receptors to screen for novel pharmacological active peptides. We find that one of these peptides, DITADDEPLT activates cannabinoid type 1 receptors. Single amino acid modifications identified a novel peptide, DIIADDEPLT (Pep19), with slightly better inverse agonist activity at cannabinoid type 1 receptors. Pep19 induced uncoupling protein 1 expression in both white adipose tissue and 3T3-L1 differentiated adipocytes; in the latter, Pep19 activates pERK1/2 and AKT signaling pathways. Uncoupling protein 1 expression induced by Pep19 in 3T3-L1 differentiated adipocytes is blocked by AM251, a cannabinoid type 1 receptors antagonist. Oral administration of Pep19 into diet-induced obese Wistar rats significantly reduces adiposity index, whole body weight, glucose, triacylglycerol, cholesterol and blood pressure, without altering heart rate; changes in the number and size of adipocytes were also observed. Pep19 has no central nervous system effects as suggested by the lack of brain c-Fos expression, cell toxicity, induction of the cannabinoid tetrad, depressive- and anxiety-like behaviors. Therefore, Pep19 has several advantages over previously identified peripherally active cannabinoid compounds, and could have clinical applications.


Assuntos
Adipócitos/metabolismo , Tecido Adiposo Branco/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Obesidade/tratamento farmacológico , Peptídeos , Receptor CB1 de Canabinoide/antagonistas & inibidores , Células 3T3-L1 , Adipócitos/patologia , Tecido Adiposo Branco/patologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Dieta Hiperlipídica/efeitos adversos , Masculino , Camundongos , Obesidade/induzido quimicamente , Obesidade/metabolismo , Obesidade/patologia , Peptídeos/química , Peptídeos/farmacologia , Ratos , Ratos Wistar , Receptor CB1 de Canabinoide/metabolismo
2.
Front Pharmacol ; 8: 269, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588483

RESUMO

Beneficial effects of cannabidiol (CBD) have been described for a wide range of psychiatric disorders, including anxiety, psychosis, and depression. The mechanisms responsible for these effects, however, are still poorly understood. Similar to clinical antidepressant or atypical antipsychotic drugs, recent findings clearly indicate that CBD, either acutely or repeatedly administered, induces plastic changes. For example, CBD attenuates the decrease in hippocampal neurogenesis and dendrite spines density induced by chronic stress and prevents microglia activation and the decrease in the number of parvalbumin-positive GABA neurons in a pharmacological model of schizophrenia. More recently, it was found that CBD modulates cell fate regulatory pathways such as autophagy and others critical pathways for neuronal survival in neurodegenerative experimental models, suggesting the potential benefit of CBD treatment for psychiatric/cognitive symptoms associated with neurodegeneration. These changes and their possible association with CBD beneficial effects in psychiatric disorders are reviewed here.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA