Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Mosq Control Assoc ; 32(4): 308-314, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28206856

RESUMO

Living organisms have been exposed to light-dark cycles that allowed them to adapt to different ecological niches. Circadian cycles affect hormone release, metabolism, and response to xenobiotic compounds. Current studies have shown that insect susceptibility to toxic agents depends on circadian cycles, mainly because the biochemical processes involved in detoxification and responses to oxidative stress are modulated by this process. The goal of this study was to determine the effect of photoperiod on resistance to permethrin in Aedes aegypti . Collections of Ae. aegypti from 4 locations in Yucatan, southern Mexico, were subjected to 2 different photoperiod schemes: dark (0 h light:24 h dark) and natural photoperiod (12 h light:12 h dark). The comparison of both photoperiods was evaluated with respect to permethrin resistance using bottle bioassays and by monitoring the possible mechanism related such as enzymatic activity and by the frequency of 2 knockdown resistance mutations in the voltage-dependent sodium channel gene (V1016I and F1534C). The susceptible strain was used as a reference. The mosquitoes in dark photoperiod showed a reduction in resistance to the pyrethroid. The α-esterases and glutathione S-transferase enzymatic activities showed lower levels in the dark photoperiod, and the frequencies of V1016I knockdown resistance mutation showed significant difference between photoperiod schemes.


Assuntos
Aedes/efeitos dos fármacos , Resistência a Inseticidas , Inseticidas/farmacologia , Permetrina/farmacologia , Fotoperíodo , Animais , Feminino , México
2.
J Med Entomol ; 51(3): 644-9, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24897857

RESUMO

Resistance to the organophosphate insecticide chlorpyrifos was evaluated in females from six strains of Aedes aegypti (L.) that expressed high levels of cross-resistance to eight pyrethroid insecticides. Relative to LC50 and LC90 at 24 h of a susceptible New Orleans (NO) strain, three strains were highly resistant to chlorpyrifos (Coatzacoalcos, resistance ratio [RRLC90 = 11.97; Pozarica, RRLC90 = 12.98; and Cosoleacaque, RRLC50 = 13.94 and RRLC90 = 17.57), one strain was moderately resistant (Veracruz, RRLC90 = 5.92), and two strains were susceptible (Tantoyuca and Martinez de la Torre, RRLC50 and RRLC90 < 5) in bottle bioassays according to Centers for Disease Control and Prevention. Furthermore, high levels of alpha- or beta-esterase activity in the sample populations were correlated with resistance, suggesting that esterase activity may be a mechanism causing the development of organophosphate resistance in these populations. Overall, the populations in this study were less resistant to chlorpyrifos than to pyrethroids. Rotation of insecticides used in control activities is recommended to delay or minimize the occurrence of high levels of resistance to chlorpyrifos among local populations of Ae. aegypti. The diagnostic dose and diagnostic time for chlorpyrifos resistance monitoring was determined to be 85 microg per bottle and 30 min, respectively, using the susceptible NO strain.


Assuntos
Aedes/efeitos dos fármacos , Clorpirifos/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Aedes/enzimologia , Animais , Relação Dose-Resposta a Droga , Feminino , Dose Letal Mediana , México
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA