Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2015: 231656, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26240818

RESUMO

Mammography is the most common and effective breast cancer screening test. However, the rate of positive findings is very low, making the radiologic interpretation monotonous and biased toward errors. This work presents a computer-aided diagnosis (CADx) method aimed to automatically triage mammogram sets. The method coregisters the left and right mammograms, extracts image features, and classifies the subjects into risk of having malignant calcifications (CS), malignant masses (MS), and healthy subject (HS). In this study, 449 subjects (197 CS, 207 MS, and 45 HS) from a public database were used to train and evaluate the CADx. Percentile-rank (p-rank) and z-normalizations were used. For the p-rank, the CS versus HS model achieved a cross-validation accuracy of 0.797 with an area under the receiver operating characteristic curve (AUC) of 0.882; the MS versus HS model obtained an accuracy of 0.772 and an AUC of 0.842. For the z-normalization, the CS versus HS model achieved an accuracy of 0.825 with an AUC of 0.882 and the MS versus HS model obtained an accuracy of 0.698 and an AUC of 0.807. The proposed method has the potential to rank cases with high probability of malignant findings aiding in the prioritization of radiologists work list.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Mamografia/métodos , Reconhecimento Automatizado de Padrão/métodos , Técnica de Subtração , Triagem/métodos , Simulação por Computador , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Pessoa de Meia-Idade , Modelos Estatísticos , Análise Multivariada , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Ultrassonografia
2.
J Med Imaging (Bellingham) ; 1(3): 031005, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26158047

RESUMO

Early diagnoses of Alzheimer's disease (AD) would confer many benefits. Several biomarkers have been proposed to achieve such a task, where features extracted from magnetic resonance imaging (MRI) have played an important role. However, studies have focused exclusively on morphological characteristics. This study aims to determine whether features relating to the signal and texture of the image could predict mild cognitive impairment (MCI) to AD progression. Clinical, biological, and positron emission tomography information and MRI images of 62 subjects from the AD neuroimaging initiative were used in this study, extracting 4150 features from each MRI. Within this multimodal database, a feature selection algorithm was used to obtain an accurate and small logistic regression model, generated by a methodology that yielded a mean blind test accuracy of 0.79. This model included six features, five of them obtained from the MRI images, and one obtained from genotyping. A risk analysis divided the subjects into low-risk and high-risk groups according to a prognostic index. The groups were statistically different ([Formula: see text]). These results demonstrated that MRI features related to both signal and texture add MCI to AD predictive power, and supported the ongoing notion that multimodal biomarkers outperform single-modality ones.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA