Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(9)2022 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-35566378

RESUMO

ßCDPEG5 and ßCDPEG2 are two derivatives comprising seven PEG linear chains of 5 and 2 kDa, respectively, conjugated to ßCD. As ßCDPEGs display different physicochemical properties than their precursors, they could also trigger distinct cellular responses. To investigate the biological behavior of ßCDPEGs in comparison to their parent compounds, we performed broad toxicological assays on RAW 264.7 macrophages, MC3T3-E1 osteoblasts, and MDCK cells. By analyzing ROS and NO2- overproduction in macrophages, we found that ßCDPEGs induced a moderate stress response without affecting cell viability. Although MC3T3-E1 osteoblasts were more sensitive than MDCK cells to ßCDPEGs and the parent compounds, a similar pattern was observed: the effect of ßCDPEG5 on cell viability and cell cycle progression was larger than that of ßCDPEG2; PEG2 affected cell viability and cell cycle more than ßCDPEG2; cell post-treatment recovery was favorable in all cases, and the compounds had similar behaviors regarding ROS generation. The effect on MDCK cell migration followed a similar pattern. In contrast, for osteoblasts, the interference of ßCDPEG5 with cell migration was smaller than that of ßCDPEG2; likewise, the effect of PEG2 was shorter than its conjugate. Overall, the covalent conjugation of ßCD and PEGs, particularly to yield ßCDPEG2, improved the biocompatibility profile, evidencing that a favorable biological response can be tuned through a thoughtful combination of materials. Moreover, this is the first time that an in vitro evaluation of ßCD and PEG has been presented for MC3T3-E1 and MDCK cells, thus providing valuable knowledge for designing biocompatible nanomaterials constructed from ßCD and PEGs.


Assuntos
beta-Ciclodextrinas , Macrófagos , Osteoblastos , Polietilenoglicóis/química , Espécies Reativas de Oxigênio/metabolismo , beta-Ciclodextrinas/química
2.
J Phys Chem B ; 126(7): 1529-1538, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35142519

RESUMO

In this study, three mono-dendronized ß-cyclodextrin (ßCD) derivatives (ßCD-1G, ßCD-2G, and ßCD-3G) were used as multitasking containers of curcumin (CUR) to influence its aqueous solubility and tautomerism, both of which are related to its biological activity. We evaluated the relevant physicochemical properties of these containers associated with their potential hosting capacity. All mono-dendronized derivatives exhibited enhanced solubility in different solvents, including water, in comparison with native ßCD. Gas-phase geometry optimizations by density functional theory (DFT) confirmed that none of the dendrons blocked the passage of CUR into the ßCD cavity, and depending on the generation, different preorganization scenarios were promoted before complexation. Phase solubility diagrams showed that all the dendronized containers have superior performance for solubilizing CUR compared to native ßCD. We proved that coprecipitation is most efficient than lyophilization for forming inclusion complexes (ICs) with dendronized containers. Even though ßCD-3G with the largest 3G dendron exhibited the highest CUR loading, the complexation of CUR with ßCD-2G provided the supramolecular system that contains CUR preferentially in its diketo tautomer, which is known for its antioxidant activity.


Assuntos
Curcumina , beta-Ciclodextrinas , Antioxidantes/química , Curcumina/química , Solubilidade , Água/química , beta-Ciclodextrinas/química
3.
Pharmaceutics ; 13(8)2021 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-34452258

RESUMO

We present a data-driven approach to unveil the pharmaceutical technologies of cyclodextrins (CDs) by analyzing a dataset of CD pharmaceutical patents. First, we implemented network science techniques to represent CD patents as a single structure and provide a framework for unsupervised detection of keywords in the patent dataset. Guided by those keywords, we further mined the dataset to examine the patenting trends according to CD-based dosage forms. CD patents formed complex networks, evidencing the supremacy of CDs for solubility enhancement and how this has triggered cutting-edge applications based on or beyond the solubility improvement. The networks exposed the significance of CDs to formulate aqueous solutions, tablets, and powders. Additionally, they highlighted the role of CDs in formulations of anti-inflammatory drugs, cancer therapies, and antiviral strategies. Text-mining showed that the trends in CDs for aqueous solutions, tablets, and powders are going upward. Gels seem to be promising, while patches and fibers are emerging. Cyclodextrins' potential in suspensions and emulsions is yet to be recognized and can become an opportunity area. This is the first unsupervised/supervised data-mining approach aimed at depicting a landscape of CDs to identify trending and emerging technologies and uncover opportunity areas in CD pharmaceutical research.

4.
J Drug Deliv Sci Technol ; 61: 102156, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33078064

RESUMO

We herein disclose how global cyclodextrin-based pharmaceutical technologies have evolved since the early 80s through a 1998 patents dataset retrieved from Derwent Innovation Index. We used text-mining techniques based on the patents semantic content to extract the knowledge contained therein, to analyze technologies related to the principal attributes of CDs: solubility, stability, and taste-masking enhancement. The majority of CDs pharmaceutical technologies are directed toward parenteral aqueous solutions. The development of oral and ocular formulations is rapidly growing, while technologies for nasal and pulmonary routes are emerging and seem to be promising. Formulations for topical, transdermal, vaginal, and rectal routes do not account for a high number of patents, but they may be hiding a great potential, representing opportunity research areas. Certainly, the progress in materials sciences, supramolecular chemistry, and nanotechnology, will influence the trend of that, apparently neglected, research. The bottom line, CDs pharmaceutical technologies are still increasing, and this trend is expected to continue in the coming years. Patent monitoring allows the identification of relevant technologies and trends to prioritize research, development, and investment in both, academia and industry. We expect the scope of this approach to be applied in the pharmaceutical field beyond CDs technological applications.

5.
Int J Biol Macromol ; 164: 1704-1714, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32763396

RESUMO

From a materials science perspective, herein we present the design and synthesis of six macromolecular carbohydrate derivatives, obtained by combining the native cyclic oligosaccharide ßCD and dendritic poly(ester) moieties, coupled by CuAAc click reactions, in a convergent fashion. We envisioned two structural variables to promote the formation of inclusion complexes (ICs) with the anti-parasitic drug Albendazole, the degree of substitution on the ßCD (mono or hepta-substitution) and the dendritic generation (from first to third). In terms of synthetic effort and cost, the mono-substituted ßCD derivatives were obtained in more approachable experimental conditions in comparison to the ßCD dendrimers (hepta-substituted macrocycle). The six dendritic derivatives were more soluble in water and showed better complexation capacity than native ßCD. For both, mono and hepta-substituted ßCD, we observed that the amount of encapsulated ABZ increases when the dendron generation increases. Interestingly, different degrees of substitution (mono and hepta) lead comparable results of ABZ complexation. In conclusion, the encapsulation performance and the consequent solubility enhancement, make these molecular containers excellent materials to positively impact the therapeutic desirability of ABZ.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/química , Albendazol/química , Química Click/métodos , Portadores de Fármacos , Substâncias Macromoleculares , Solubilidade , Água/química , beta-Ciclodextrinas
6.
Molecules ; 24(14)2019 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-31336585

RESUMO

A series of 12 polysubstituted pyrrolo[3,4-b]pyridin-5-ones were synthesized via a one-pot cascade process (Ugi-3CR/aza Diels-Alder/N-acylation/decarboxylation/dehydration) and studied in vitro using human epithelial cervical carcinoma SiHa, HeLa, and CaSki cell line cultures. Three compounds of the series exhibited significative cytotoxicity against the three cell lines, with HeLa being the most sensitive one. Then, based on these results, in silico studies by docking techniques were performed using Paclitaxel as a reference and αß-tubulin as the selected biological target. Worth highlighting is that strong hydrophobic interactions were observed between the three active molecules and the reference drug Paclitaxel, to the αß-tubulin. In consequence, it was determined that hydrophobic-aromatic moieties of bioactive compounds and Paclitaxel play a key role in making stronger interactions to the ligand-target complex. A quantitative structure activity relationship (QSAR) study revealed that the six membered rings are the most significant molecular frameworks, being present in all proposed models for the in vitro-studied cell lines. Finally, also from the docking interpretation, a ligand-based pharmacophore model is proposed in order to find further potential polyheterocyclic candidates to bind stronger to the αß-tubulin.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Técnicas de Química Sintética , Relação Quantitativa Estrutura-Atividade , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Interações Hidrofóbicas e Hidrofílicas , Lisina/análogos & derivados , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
7.
Mol Divers ; 22(4): 779-790, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29748853

RESUMO

Leishmaniasis is a neglected tropical disease that currently affects 12 million people, and over 1 billion people are at risk of infection. Current chemotherapeutic approaches used to treat this disease are unsatisfactory, and the limitations of these drugs highlight the necessity to develop treatments with improved efficacy and safety. To inform the rational design and development of more efficient therapies, the present study reports a chemoinformatic approach using the ChEMBL database to retrieve benzimidazole as a target scaffold. Our analysis revealed that a limited number of studies had investigated the antileishmanial effects of benzimidazoles. Among this limited number, L. major was the species most commonly used to evaluate the antileishmanial effects of these compounds, whereas L. amazonensis and L. braziliensis were used least often in the reported studies. The antileishmanial activities of benzimidazole derivatives were notably variable, a fact that may depend on the substitution pattern of the scaffold. In addition, we investigated the effects of a benzimidazole derivative on promastigotes and amastigotes of L. infantum and L. amazonensis using a novel fluorometric method. Significant antileishmanial effects were observed on both species, with L. amazonensis being the most sensitive. To the best of our knowledge, this chemoinformatic analysis represents the first attempt to determine the relevance of benzimidazole scaffolds for antileishmanial drug discovery using the ChEMBL database. The present findings will provide relevant information for future structure-activity relationship studies and for the investigation of benzimidazole-derived drugs as potential treatments for leishmaniasis.


Assuntos
Antiprotozoários/química , Antiprotozoários/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Leishmania/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Leishmania/crescimento & desenvolvimento , Relação Estrutura-Atividade
8.
Mol Divers ; 18(3): 599-610, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24710715

RESUMO

Understanding the relationship between the chemical structure of bioactive compounds and Caco-2 permeability is of major importance in modern drug discovery. The purpose of this work was to characterize systematically the Caco-2 permeability landscape of a benchmark dataset of 100 molecules using a novel approach based on the emerging concept of property landscape modeling. Pairwise comparisons of the Caco-2 permeability and chemical structures were calculated for all possible combinations in the dataset. To compare the chemical structures, two distinct manners to represent the molecules were employed, namely, continuous properties previously used to derive QSPR models and molecular fingerprints with different designs. We introduce the concept of "permeability cliffs" discussing cases of compounds with high molecular similarity but large permeability difference. All permeability cliffs were regarded as shallow cliffs, since no extreme difference in Caco-2 permeability (less than two log units) was identified in the dataset. A clear dependence of Caco-2 permeability landscape with molecular representation was observed. The current approach can be further extended to model other ADME relevant landscapes.


Assuntos
Descoberta de Drogas/métodos , Relação Quantitativa Estrutura-Atividade , Células CACO-2 , Permeabilidade da Membrana Celular , Humanos , Permeabilidade
9.
Carbohydr Polym ; 87(1): 471-479, 2012 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34662992

RESUMO

The molecular interactions of 5,6-dichloro-2-(trifluoromethyl)-1H-benzimidazole (G2), an antiprotozoa with poor aqueous solubility, with 2-hydroxypropyl-α-cyclodextrin (HPαCD), methyl-ß-cyclodextrin (MßCD) and 2-hydroxypropyl-ß-cyclodextrin (HPßCD) were examined. The aqueous solubility enhancement by cyclodextrins (CDs) was evidenced in phase-solubility diagrams, and the stoichiometry of G2/CD systems was determined by Job's plots. Two-dimensional NMR spectroscopic data revealed that a different mode of interaction took place between G2 and CDs in solution. With HPαCD, a non-inclusion complex was generated. In the case of MßCD, a typical host-guest system was obtained and with HPßCD a partial inclusion complex through the narrow side of the macrocycle was formed. ESI-mass spectrometric data confirmed the stoichiometry and mode of interaction of these systems in solution. Solid-state characterization (scanning calorimetry and powder X-ray diffraction) supported the inclusion complex formation. The leishmanicidal activity, trypanocidal activity and non-toxic profile of G2/MßCD showed the advantages of using this inclusion complex to promote the biological assays extension of G2.

10.
Biochim Biophys Acta ; 1818(3): 738-46, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22155684

RESUMO

Plasmodium, the parasite which causes malaria in humans multiplies in the liver and then infects circulating erythrocytes. Thus, the role of the erythrocyte cell membrane in antimalarial drug activity and resistance has key importance. The effects of the antiplasmodial N(6)-(4-methoxybenzyl)quinazoline-2,4,6-triamine (M4), and its inclusion complex (M4/HPßCD) with 2-hydroxypropyl-ß-cyclodextrin (HPßCD) on human erythrocytes and on cell membrane molecular models are herein reported. This work evidences that M4/HPßCD interacts with red cells as follows: a) in scanning electron microscopy (SEM) studies on human erythrocytes induced shape changes at a 10µM concentration; b) in isolated unsealed human erythrocyte membranes (IUM) a concentration as low as 1µM induced sharp DPH fluorescence anisotropy decrease whereas increasing concentrations produced a monotonically decrease of DPH fluorescence lifetime at 37°C; c) X-ray diffraction studies showed that 200µM induced a complete structural perturbation of dimyristoylphosphatidylcholine (DMPC) bilayers whereas no significant effects were detected in dimyristoylphosphatidylethanolamine (DMPE) bilayers, classes of lipids present in the outer and inner monolayers of the human erythrocyte membrane, respectively; d) fluorescence spectroscopy data showed that increasing concentrations of the complex interacted with the deep hydrophobic core of DMPC large unilamellar vesicles (LUV) at 18°C. All these experiments are consistent with the insertion of M4/HPßCD in the outer monolayer of the human erythrocyte membrane; thus, it can be considered a promising and novel antimalarial agent.


Assuntos
Antimaláricos/química , Membrana Eritrocítica/química , Modelos Moleculares , Quinazolinas/química , Antimaláricos/farmacologia , Dimiristoilfosfatidilcolina/química , Dimiristoilfosfatidilcolina/metabolismo , Relação Dose-Resposta a Droga , Membrana Eritrocítica/metabolismo , Membrana Eritrocítica/ultraestrutura , Humanos , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Fosfatidiletanolaminas/química , Fosfatidiletanolaminas/metabolismo , Quinazolinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA