Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 10: 791667, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281092

RESUMO

Obesity is a significant health concern that has reached alarming proportions worldwide. The overconsumption of high-energy foods may cause metabolic dysfunction and promote the generation of new adipocytes by contributing to several obesity-related diseases. Such concerns demand a deeper understanding of the origin of adipocytes if we want to develop new therapeutic approaches. Recent findings indicate that adipocyte development is facilitated by tight epigenetic reprogramming, which is required to activate the gene program to change the fate of mesenchymal stem cells (MSCs) into mature adipocytes. Like adipose tissue, different tissues are also potential sources of adipocyte-generating MSCs, so it is interesting to explore whether the epigenetic mechanisms of adipogenic differentiation vary from one depot to another. To investigate how DNA methylation (an epigenetic mark that plays an essential role in controlling transcription and cellular differentiation) contributes to adipogenic potential, dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PLSCs) were analyzed during adipogenic differentiation in vitro. Here, we show that the capacity to differentiate from DPSCs or PLSCs to adipocytes may be associated with the expression pattern of DNA methylation-related genes acquired during the induction of the adipogenic program. Our study provides insights into the details of DNA methylation during the adipogenic determination of dental stem cells, which can be a starting point to identify the factors that affect the differentiation of these cells and provide new strategies to regulate differentiation and adipocyte expansion.

2.
J Pers Med ; 11(8)2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34442382

RESUMO

Dental tissue-derived mesenchymal stem cells (DT-MSCs) are a promising resource for tissue regeneration due to their multilineage potential. Despite accumulating data regarding the biology and differentiation potential of DT-MSCs, few studies have investigated their adipogenic capacity. In this study, we have investigated the mesenchymal features of dental pulp stem cells (DPSCs), as well as the in vitro effects of different adipogenic media on these cells, and compared them to those of periodontal ligament stem cells (PLSCs) and dental follicle stem cells (DFSCs). DFSC, PLSCs, and DPSCs exhibit similar morphology and proliferation capacity, but they differ in their self-renewal ability and expression of stemness markers (e.g OCT4 andc-MYC). Interestingly, DFSCs and PLSCs exhibited more lipid accumulation than DPSCs when induced to adipogenic differentiation. In addition, the mRNA levels of adipogenic markers (PPAR, LPL, and ADIPOQ) were significantly higher in DFSCs and PLSCs than in DPSCs, which could be related to the differences in the adipogenic commitment in those cells. These findings reveal that the adipogenic capacity differ among DT-MSCs, features that might be advantageous to increasing our understanding about the developmental origins and regulation of adipogenic commitment.

3.
Int J Mol Sci ; 20(16)2019 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-31408999

RESUMO

Obesity is a rising public health problem that contributes to the development of several metabolic diseases and cancer. Adipocyte precursors outside of adipose depots that expand due to overweight and obesity may have a negative impact on human health. Determining how progenitor cells acquire a preadipocyte commitment and become mature adipocytes remains a significant challenge. Over the past several years, we have learned that the establishment of cellular identity is widely influenced by changes in histone marks, which in turn modulate chromatin structure. In this regard, histone lysine demethylases (KDMs) are now emerging as key players that shape chromatin through their ability to demethylate almost all major histone methylation sites. Recent research has shown that KDMs orchestrate the chromatin landscape, which mediates the activation of adipocyte-specific genes. In addition, KDMs have functions in addition to their enzymatic activity, which are beginning to be revealed, and their dysregulation seems to be related to the development of metabolic disorders. In this review, we highlight the biological functions of KDMs that contribute to the establishment of a permissive or repressive chromatin environment during the mesenchymal stem cell transition into adipocytes. Understanding how KDMs regulate adipogenesis might prompt the development of new strategies for fighting obesity-related diseases.


Assuntos
Adipogenia , Epigênese Genética , Histona Desmetilases/metabolismo , Histonas/metabolismo , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Cromatina/genética , Cromatina/metabolismo , Histona Desmetilases/genética , Histonas/genética , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo
4.
Front Physiol ; 8: 999, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29270128

RESUMO

Adult stem cells have attracted scientific attention because they are able to self-renew and differentiate into several specialized cell types. In this context, human dental tissue-derived mesenchymal stem cells (hDT-MSCs) have emerged as a possible solution for repairing or regenerating damaged tissues. These cells can be isolated from primary teeth that are naturally replaced, third molars, or other dental tissues and exhibit self-renewal, a high proliferative rate and a great multilineage potential. However, the cellular and molecular mechanisms that determine lineage specification are still largely unknown. It is known that a change in cell fate requires the deletion of existing transcriptional programs, followed by the establishment of a new developmental program to give rise to a new cell lineage. Increasing evidence indicates that chromatin structure conformation can influence cell fate. In this way, reversible chemical modifications at the DNA or histone level, and combinations thereof can activate or inactivate cell-type-specific gene sequences, giving rise to an alternative cell fates. On the other hand, miRNAs are starting to emerge as a possible player in establishing particular somatic lineages. In this review, we discuss two new and promising research fields in medicine and biology, epigenetics and stem cells, by summarizing the properties of hDT-MSCs and highlighting the recent findings on epigenetic contributions to the regulation of cellular differentiation.

5.
Rev Iberoam Micol ; 31(2): 137-40, 2014.
Artigo em Espanhol | MEDLINE | ID: mdl-24071641

RESUMO

BACKGROUND: Candida albicans has a variety of virulence factors, including secreted aspartyl proteases, which are determinant factors in the pathogenesis of this yeast in immunocompromised patients. AIMS: Proteinase activity was identified in C. albicans strains isolated from the oral cavity of immunocompromised patients with cancer, diabetes and HIV+, with oral candidiasis and in healthy subjects. METHODS: Two hundred and fifty C. albicans strains were analyzed, distributed in 5 different groups: patients with cancer, diabetes, HIV+, with oral candidiasis and healthy subjects. RESULTS: Proteolytic activity was identified in 46% of the strains from cancer patients, 54% from HIV+ patients, 60% from diabetics, 70% from oral candidiasis patients, and 42% from healthy subjects. Activity was higher in strains from immunocompromised and oral candidiasis patients than in healthy subjects. Differences were observed between the candidiasis-healthy, candidiasis-HIV+, and diabetic-healthy groups. No differences were observed between the oral candidiasis, diabetes and cancer patients, between the diabetes and HIV+ patients, or between the cancer patients, HIV+ patients and healthy subjects. CONCLUSIONS: The present results suggest that although secreted aspartyl proteases are important in the pathogenesis of C. albicans, their activity depends on host conditions.


Assuntos
Candida albicans/enzimologia , Candidíase Bucal/microbiologia , Proteínas Fúngicas/análise , Hospedeiro Imunocomprometido , Boca/microbiologia , Peptídeo Hidrolases/análise , Candida albicans/isolamento & purificação , Candida albicans/patogenicidade , Portador Sadio/microbiologia , Complicações do Diabetes/microbiologia , Infecções por HIV/microbiologia , Humanos , México , Neoplasias/complicações , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA