Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38929747

RESUMO

Type 2 diabetes mellitus (T2DM) stands as a prevalent global public health issue caused by deficiencies in the action of insulin and/or insulin production. In the liver, insulin plays an important role by inhibiting hepatic glucose production and stimulating glycogen storage, thereby contributing to blood glucose regulation. Kaempferitrin (KP) and kaempferol (KM), flavonoids found in Bauhinia forficata, exhibit insulin-mimetic properties, showing promise in managing T2DM. In this study, we aimed to assess the potential of these compounds in modulating the insulin signaling pathway and/or glucose metabolism. Cell viability assays confirmed the non-cytotoxic nature of both compounds toward HepG2 cells at the concentrations and times evaluated. Theoretical molecular docking studies revealed that KM had the best docking pose with the IR ß subunit when compared to the KP. Moreover, Langmuir monolayer evaluation indicated molecular incorporation for both KM and KP. Specifically, KM exhibited the capability to increase AKT phosphorylation, a key kinase in insulin signaling, regardless of insulin receptor (IR) activation. Notably, KM showed an additional synergistic effect with insulin in activating AKT. In conclusion, our findings suggest the potential of KM as a promising compound for stimulating AKT activation, thereby influencing energy metabolism in T2DM.

2.
Bioorg Chem ; 124: 105814, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35461015

RESUMO

The present work evaluated the antiprotozoal activity of isolinderanolide E, isolated from the Brazilian plant Nectandra oppositifolia, against promastigote forms of Leishmania (Leishmania) amazonensis. The compound exhibited an EC50 value of 20.3 µM, similar to the positive control miltefosine (IC50 of 19.4 µM), and reduced toxicity to macrophages (CC50 > 200 µM). Based on these results, Langmuir monolayers of two unsaturated lipids: 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), were employed as a model of mammalian and parasite membranes, respectively, to study the interaction of isolinderanolide E at a molecular level. The films were characterized with tensiometry (surface pressure-area isotherms and surface pressure-time curves), infrared spectroscopy, and Brewster angle microscopy (BAM). This compound changed the profile of the isotherms leading to fluid DOPC and DOPE monolayers, which were not able to attain rigid states even with compression. Infrared spectroscopy showed that the bioactive compound decreases the trans/gauche ratio conformers related to the molecular conformational disorder. BAM showed the formation of specific aggregates upon drug incorporation. In conclusion, isolinderanolide E changes the thermodynamic, mechanical, structural, and morphological characteristics of the monolayer of these unsaturated lipids, which may be essential to understand the action at the molecular level bioactives in biointerfaces.


Assuntos
Antiprotozoários , Lauraceae , Animais , Antiprotozoários/farmacologia , Membrana Celular , Lipídeos/análise , Mamíferos , Propriedades de Superfície , Termodinâmica
3.
Biochim Biophys Acta Biomembr ; 1863(10): 183690, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34224703

RESUMO

A long-tail lactone, named isolinderanolide E, was obtained from Nectandra oppositifolia and incorporated in Langmuir monolayers of dipalmitoyl-phosphoethanolamine (DPPE) as a model of microbial membranes. The compound was dissolved in chloroform and mixed with DPPE to provide mixed solutions spread on the air-water interface. After solvent evaporation, mixed monolayers were formed, and surface pressure-area isotherms, dilatational rheology, Brewster angle microscopy (BAM), and infrared spectroscopy were employed to characterize the prodrug-membrane interactions. Isolinderanolide E expanded DPPE monolayers, denoting repulsive interactions. At 30 mN/m, the monolayer presented higher viscoelastic and in-plane elasticity parameters and an increased ratio of all-trans/gauche conformers of the alkyl chains, confirming molecular order. Morphology of the monolayer was analyzed by BAM, which revealed a more homogeneous distribution of Isolinderanolide E along the DPPE monolayer than the prodrug directly spread at the interface, which tends to aggregate. A molecular model proposing the molecular orientation of the amphiphilic drug is presented and explained by the distortion of the alkyl chains as well as by viscoelastic changes. In conclusion, the prodrug changes the thermodynamic, rheological, morphological, and structural properties of the DPPE monolayer, which may be essential to understand, at the molecular level, the action of bioactives in selected membrane models.


Assuntos
Anti-Infecciosos/metabolismo , Lactonas/metabolismo , Lauraceae/metabolismo , Membranas Artificiais , Modelos Químicos , Microscopia/métodos , Éteres Fenílicos/metabolismo , Reologia , Análise Espectral/métodos , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA