Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Am J Med Genet A ; : e63802, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38924610

RESUMO

Low-pass whole genome sequencing (LP-WGS) has been applied as alternative method to detect copy number variants (CNVs) in the clinical setting. Compared with chromosomal microarray analysis (CMA), the sequencing-based approach provides a similar resolution of CNV detection at a lower cost. In this study, we assessed the efficiency and reliability of LP-WGS as a more affordable alternative to CMA. A total of 1363 patients with unexplained neurodevelopmental delay/intellectual disability, autism spectrum disorders, and/or multiple congenital anomalies were enrolled. Those patients were referred from 15 nonprofit organizations and university centers located in different states in Brazil. The analysis of LP-WGS at 1x coverage (>50kb) revealed a positive testing result in 22% of the cases (304/1363), in which 219 and 85 correspond to pathogenic/likely pathogenic (P/LP) CNVs and variants of uncertain significance (VUS), respectively. The 16% (219/1363) diagnostic yield observed in our cohort is comparable to the 15%-20% reported for CMA in the literature. The use of commercial software, as demonstrated in this study, simplifies the implementation of the test in clinical settings. Particularly for countries like Brazil, where the cost of CMA presents a substantial barrier to most of the population, LP-WGS emerges as a cost-effective alternative for investigating copy number changes in cytogenetics.

2.
Chromosome Res ; 32(2): 6, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504027

RESUMO

Structural variants (SVs) pose a challenge to detect and interpret, but their study provides novel biological insights and molecular diagnosis underlying rare diseases. The aim of this study was to resolve a 9p24 rearrangement segregating in a family through five generations with a congenital heart defect (congenital pulmonary and aortic valvular stenosis and pulmonary artery stenosis), by applying a combined genomic analysis. The analysis involved multiple techniques, including karyotype, chromosomal microarray analysis (CMA), FISH, genome sequencing (GS), RNA-seq, and optical genome mapping (OGM). A complex 9p24 SV was hinted at by CMA results, showing three interspersed duplicated segments. Combined GS and OGM analyses revealed that the 9p24 duplications constitute a complex SV, on which a set of breakpoints matches the boundaries of the CMA duplicated sequences. The proposed structure for this complex rearrangement implies three duplications associated with an inversion of ~ 2 Mb region on chromosome 9 and a SINE element insertion at the more distal breakpoint. Interestingly, this genomic structure of rearrangement forms a chimeric transcript of the KANK1/DMRT1 loci, which was confirmed by both RNA-seq and Sanger sequencing on blood samples from 9p24 rearrangement carriers. Altogether with breakpoint amplification and FISH analysis, this combined approach allowed a deep characterization of this complex rearrangement. Although the genotype-phenotype correlation remains elusive from the molecular mechanism point of view, this study identified a large genomic rearrangement at 9p24 segregating with a familial congenital heart defect, revealing a genetic biomarker that was successfully applied for embryo selection, changing the reproductive perspective of affected individuals.


Assuntos
Cromossomos , Variações do Número de Cópias de DNA , Humanos , Inversão Cromossômica , Sequência de Bases , Células Germinativas , Proteínas do Citoesqueleto/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
3.
Mol Neurobiol ; 61(8): 5230-5247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38180615

RESUMO

Microcephaly is characterized by an occipitofrontal circumference at least two standard deviations below the mean for age and sex. Neurodevelopmental disorders (NDD) are commonly associated with microcephaly, due to perturbations in brain development and functioning. Given the extensive genetic heterogeneity of microcephaly, managing patients is hindered by the broad spectrum of diagnostic possibilities that exist before conducting molecular testing. We investigated the genetic basis of syndromic microcephaly accompanied by NDD in a Brazilian cohort of 45 individuals and characterized associated clinical features, as well as evaluated the effectiveness of whole-exome sequencing (WES) as a diagnostic tool for this condition. Patients previously negative for pathogenic copy number variants underwent WES, which was performed using a trio approach for isolated index cases (n = 31), only the index in isolated cases with parental consanguinity (n = 8) or affected siblings in familial cases (n = 3). Pathogenic/likely pathogenic variants were identified in 19 families (18 genes) with a diagnostic yield of approximately 45%. Nearly 86% of the individuals had global developmental delay/intellectual disability and 51% presented with behavioral disturbances. Additional frequent clinical features included facial dysmorphisms (80%), brain malformations (67%), musculoskeletal (71%) or cardiovascular (47%) defects, and short stature (54%). Our findings unraveled the underlying genetic basis of microcephaly in half of the patients, demonstrating a high diagnostic yield of WES for microcephaly and reinforcing its genetic heterogeneity. We expanded the phenotypic spectrum associated with the condition and identified a potentially novel gene (CCDC17) for congenital microcephaly.


Assuntos
Microcefalia , Transtornos do Neurodesenvolvimento , Humanos , Microcefalia/genética , Brasil , Masculino , Feminino , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/diagnóstico , Criança , Pré-Escolar , Adolescente , Sequenciamento do Exoma , Síndrome , Adulto Jovem , Estudos de Coortes , Adulto , Lactente
4.
Am J Med Genet A ; 194(6): e63544, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38258498

RESUMO

In this pilot study, we aimed to evaluate the feasibility of whole genome sequencing (WGS) as a first-tier diagnostic test for infants hospitalized in neonatal intensive care units in the Brazilian healthcare system. The cohort presented here results from a joint collaboration between private and public hospitals in Brazil considering the initiative of a clinical laboratory to provide timely diagnosis for critically ill infants. We performed trio (proband and parents) WGS in 21 infants suspected of a genetic disease with an urgent need for diagnosis to guide medical care. Overall, the primary indication for genetic testing was dysmorphic syndromes (n = 14, 67%) followed by inborn errors of metabolism (n = 6, 29%) and skeletal dysplasias (n = 1, 5%). The diagnostic yield in our cohort was 57% (12/21) based on cases that received a definitive or likely definitive diagnostic result from WGS analysis. A total of 16 pathogenic/likely pathogenic variants and 10 variants of unknown significance were detected, and in most cases inherited from an unaffected parent. In addition, the reported variants were of different types, but mainly missense (58%) and associated with autosomal diseases (19/26); only three were associated with X-linked diseases, detected in hemizygosity in the proband an inherited from an unaffected mother. Notably, we identified 10 novel variants, absent from public genomic databases, in our cohort. Considering the entire diagnostic process, the average turnaround time from enrollment to medical report in our study was 53 days. Our findings demonstrate the remarkable utility of WGS as a diagnostic tool, elevating the potential of transformative impact since it outperforms conventional genetic tests. Here, we address the main challenges associated with implementing WGS in the medical care system in Brazil, as well as discuss the potential benefits and limitations of WGS as a diagnostic tool in the neonatal care setting.


Assuntos
Testes Genéticos , Unidades de Terapia Intensiva Neonatal , Sequenciamento Completo do Genoma , Humanos , Brasil/epidemiologia , Recém-Nascido , Masculino , Feminino , Testes Genéticos/métodos , Projetos Piloto , Lactente , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética
5.
Curr Obes Rep ; 13(2): 313-337, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38277088

RESUMO

Syndromic obesity refers to obesity occurring with additional clinical findings, such as intellectual disability/developmental delay, dysmorphic features, and congenital malformations. PURPOSE OF REVIEW: To present a narrative review regarding the genetic etiology, clinical description, and molecular diagnosis of syndromic obesity, which is a rare condition with high phenotypic variability and genetic heterogeneity. The following syndromes are presented in this review: Prader-Willi, Bardet-Biedl, Pseudohypoparathyroidism, Alström, Smith-Magenis, Cohen, Temple, 1p36 deletion, 16p11.2 microdeletion, Kleefstra, SIM1-related, Börjeson-Forssman-Lehmann, WAGRO, Carpenter, MORM, and MYT1L-related syndromes. RECENT FINDINGS: There are three main groups of mechanisms for syndromic obesity: imprinting, transcriptional activity regulation, and cellular cilia function. For molecular diagnostic, methods of genome-wide investigation should be prioritized over sequencing of panels of syndromic obesity genes. In addition, we present novel syndromic conditions that need further delineation, but evidences suggest they have a higher frequency of obesity. The etiology of syndromic obesity tends to be linked to disrupted neurodevelopment (central) and is associated with a diversity of genes and biological pathways. In the genetic investigation of individuals with syndromic obesity, the possibility that the etiology of the syndromic condition is independent of obesity should be considered. The accurate genetic diagnosis impacts medical management, treatment, and prognosis, and allows proper genetic counseling.


Assuntos
Obesidade , Humanos , Obesidade/genética , Deficiência Intelectual/genética , Síndrome , Fenótipo , Síndrome de Bardet-Biedl/genética , Síndrome de Prader-Willi/genética , Síndrome de Prader-Willi/diagnóstico , Deficiências do Desenvolvimento/genética , Síndrome de Alstrom/genética
6.
Ann Hum Genet ; 88(2): 113-125, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-37807935

RESUMO

INTRODUCTION: Next generation sequencing technology has greatly reduced the cost and time required for sequencing a genome. An approach that is rapidly being adopted as an alternative method for CNV analysis is the low-pass whole genome sequencing (LP-WGS). Here, we evaluated the performance of LP-WGS to detect copy number variants (CNVs) in clinical cytogenetics. MATERIALS AND METHODS: DNA samples with known CNVs detected by chromosomal microarray analyses (CMA) were selected for comparison and used as positive controls; our panel included 44 DNA samples (12 prenatal and 32 postnatal), comprising a total of 55 chromosome imbalances. The selected cases were chosen to provide a wide range of clinically relevant CNVs, the vast majority being associated with intellectual disability or recognizable syndromes. The chromosome imbalances ranged in size from 75 kb to 90.3 Mb, including aneuploidies and two cases of mosaicism. RESULTS: All CNVs were successfully detected by LP-WGS, showing a high level of consistency and robust performance of the sequencing method. Notably, the size of chromosome imbalances detected by CMA and LP-WGS were compatible between the two different platforms, which indicates that the resolution and sensitivity of the LP-WGS approach are at least similar to those provided by CMA. DISCUSSION: Our data show the potential use of LP-WGS to detect CNVs in clinical diagnosis and confirm the method as an alternative for chromosome imbalances detection. The diagnostic effectiveness and feasibility of LP-WGS, in this technical validation study, were evidenced by a clinically representative dataset of CNVs that allowed a systematic assessment of the detection power and the accuracy of the sequencing approach. Further, since the software used in this study is commercially available, the method can easily be tested and implemented in a routine diagnostic setting.


Assuntos
Aneuploidia , Variações do Número de Cópias de DNA , Gravidez , Feminino , Humanos , Análise Custo-Benefício , Sequenciamento Completo do Genoma/métodos , DNA
7.
Gene ; 871: 147424, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37054903

RESUMO

Xia-Gibbs syndrome (XGS) is a syndromic form of intellectual disability caused by heterozygous AHDC1 variants, but the pathophysiological mechanisms underlying this syndrome are still unclear. In this manuscript, we describe the development of two different functional models: three induced pluripotent stem cell (iPSC) lines with different loss-of-function (LoF) AHDC1 variants, derived by reprogramming peripheral blood mononuclear cells from XGS patients, and a zebrafish strain with a LoF variant in the ortholog gene (ahdc1) obtained through CRISPR/Cas9-mediated editing. The three iPSC lines showed expression of pluripotency factors (SOX2, SSEA-4, OCT3/4, and NANOG). To verify the capacity of iPSC to differentiate into the three germ layers, we obtained embryoid bodies (EBs), induced their differentiation, and confirmed the mRNA expression of ectodermal, mesodermal, and endodermal markers using the TaqMan hPSC Scorecard. The iPSC lines were also approved for the following quality tests: chromosomal microarray analysis (CMA), mycoplasma testing, and short tandem repeat (STR) DNA profiling. The zebrafish model has an insertion of four base pairs in the ahdc1 gene, is fertile, and breeding between heterozygous and wild-type (WT) animals generated offspring in a genotypic proportion in agreement with Mendelian law. The established iPSC and zebrafish lines were deposited on the hpscreg.eu and zfin.org platforms, respectively. These biological models are the first for XGS and will be used in future studies that investigate the pathophysiology of this syndrome, unraveling its underlying molecular mechanisms.


Assuntos
Anormalidades Múltiplas , Células-Tronco Pluripotentes Induzidas , Deficiência Intelectual , Animais , Deficiência Intelectual/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Peixe-Zebra/genética , Leucócitos Mononucleares , Anormalidades Múltiplas/genética , Diferenciação Celular/genética , Síndrome
8.
Mol Neurobiol ; 60(7): 3758-3769, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36943625

RESUMO

Intellectual disability (ID) is an early onset impairment in cognitive functioning and adaptive behavior, affecting approximately 1% of the population worldwide. Extreme skewing of X-chromosome inactivation (XCI) can be associated with ID phenotypes caused by pathogenic variants in the X chromosome. We analyzed the XCI pattern in blood samples of 194 women with idiopathic ID, using the androgen receptor gene (AR) methylation assay. Among the 136 patients who were informative, 11 (8%) presented with extreme or total XCI skewing (≥ 90%), which was significantly higher than expected by chance. Whole-exome data obtained from these 11 patients revealed the presence of dominant pathogenic variants in eight of them, all sporadic cases, resulting in a molecular diagnostic rate of 73% (8/11 patients). All variants were mapped to ID-related genes with dominant phenotypes: four variants in the X-linked genes DDX3X (an XCI escape gene; two cases), WDR45, and PDHA1, and four variants in the autosomal genes KCNB1, CTNNB1, YY1, and ANKRD11. Three of the autosomal genes had no obvious correlation with the observed XCI skewing. However, YY1 is a known transcriptional repressor that acts in the binding of the XIST long noncoding RNA on the inactive X chromosome, providing a mechanistic link between the pathogenic variant and the detected skewed XCI in the carrier. These data confirm that extreme XCI skewing in females with ID is highly indicative of causative X-linked pathogenic variants, and point to the possibility of identifying causative variants in autosomal genes with a XCI role.


Assuntos
Deficiência Intelectual , Feminino , Humanos , Deficiência Intelectual/genética , Inativação do Cromossomo X/genética , Fenótipo , Genes Ligados ao Cromossomo X , Cromossomos , Proteínas de Transporte/genética
9.
Am J Med Genet A ; 191(2): 570-574, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36333968

RESUMO

The causal link between variants in the SCAF4 gene and a syndromic form of intellectual disability (ID) was established in 2020 by Fliedner et al. Since then, no additional cases have been reported. We performed exome sequencing in a 16-year-old Brazilian male presenting with ID, epilepsy, behavioral problems, speech impairment, facial dysmorphisms, heart malformations, and obesity. A de novo pathogenic variant [SCAF4(NM_020706.2):c.374_375dup(p.Glu126LeufsTer20)] was identified. This is the second study reporting the involvement of SCAF4 in syndromic ID, and the description of the patient's clinical features contributes to defining the phenotypic spectrum of this recently described Mendelian disorder.


Assuntos
Epilepsia , Deficiência Intelectual , Comportamento Problema , Humanos , Masculino , Adolescente , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Epilepsia/genética , Sequenciamento do Exoma , Síndrome , Fenótipo , Fatores de Processamento de Serina-Arginina/genética
10.
J Pediatr ; 252: 56-60.e2, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067875

RESUMO

OBJECTIVE: To report the effectiveness of early molecular diagnosis in the clinical management of rare diseases, presenting 8 patients with 8p23.1DS who have clinical features that overlap the phenotypic spectrum of 22q11.2DS. STUDY DESIGN: This report is part of a previous study that aims to provide a precocious molecular diagnosis of the 22q11.2 deletion syndrome in 118 infants with congenital heart disease. To confirm the clinical diagnosis, patients underwent comparative genomic screening by the multiplex ligation-dependent probe amplification (MLPA) assay with the SALSA MLPA probemix kits P064-B2, P036-E1, P070-B2, P356-A1, and P250- B1. Subsequently, the patients performed the genomic microarray using the Infinium CytoSNP-850K BeadChip to confirm the deletion, determine the breakpoints of the deletion, and search for genomic copy number variations. RESULTS: MLPA performed with 3 different kits revealed the 8p23.1 typical deletion involving the PPP1R3B, MSRA, and GATA4 genes in the 5 patients. The array analysis was performed on these 5 patients and 3 other patients (8 patients) who also had clinical suspicion of 22q11 deletion (8 patients) allowed a precise definition of the breakpoints and excluded other genomic abnormalities. CONCLUSIONS: Cytogenomic screening was efficient in establishing a differential diagnosis and ruling out the presence of other concomitant syndromes. The clinical picture of the 8p23.1 deletion syndrome is challenging; however, cytogenomic tools can provide an exact diagnosis and help to clarify the genotype-phenotype complexity of these patients. Our reports underline the importance of early diagnosis and clinical follow-up of microdeletion syndromes.


Assuntos
Síndrome de DiGeorge , Cardiopatias Congênitas , Humanos , Deleção Cromossômica , Variações do Número de Cópias de DNA , Síndrome de DiGeorge/diagnóstico , Fenótipo , Cardiopatias Congênitas/diagnóstico , Cardiopatias Congênitas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA