Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 27(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36364012

RESUMO

The effect of different high-pressure processing (HPP) treatments on casein micelles was analyzed through scanning electron microscopy (SEM) and a particle size distribution analysis. Raw whole and skim milk samples were subjected to HPP treatments at 400, 500 and 600 MPa for Come-Up Times (CUT) up to 15 min at ambient temperature. Three different phenomena were observed in the casein micelles: fragmentation, alterations to shape and agglomeration. The particle size distribution analysis determined that, as pressure and time treatment increased, the three phenomena intensified. First, the size of the casein micelles began to decrease as their fragmentation occurred. Subsequently, the casein micelles lost roundness, and their shape deformed. Finally, in the most intense treatments (higher pressures and/or longer times), the micelles fragments began to agglomerate, which resulted in an increase in their average diameter. Homogenization and defatting had no significant effect on the casein micelles; however, the presence of fat in whole milk samples was bioprotective, as the effects of the three phenomena appeared faster in treated skim milk samples. Through this study, it was concluded that the size and structure of casein micelles are greatly altered during high-pressure treatment. These results provide information that broadens the understanding of the changes induced on casein micelles by high-pressure treatments at room temperature.


Assuntos
Caseínas , Micelas , Animais , Caseínas/química , Leite/química , Proteínas do Leite/química
2.
Foods ; 11(15)2022 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954108

RESUMO

Black and red raspberries are fruits with a high phenolic and vitamin C content but are highly susceptible to deterioration. The effect of high hydrostatic pressure (HHP 400−600 MPa/CUT-10 min) and pulsed electric fields (PEF, frequency 100−500 Hz, pulse number 100, electric field strength from 11.3 to 23.3 kV/cm, and specific energy from 19.7 to 168.4 kJ/L) processes on black/red raspberry juice was studied. The effect on the inactivation of microorganisms and pectin methylesterase (PME) activity, physicochemical parameters (pH, acidity, total soluble solids (°Brix), and water activity (aw)), vitamin C and phenolic compounds content were also determined. Results reveal that all HHP-treatments produced the highest (p < 0.05) log-reduction of molds (log 1.85 to 3.72), and yeast (log 3.19), in comparison with PEF-treatments. Increments in pH, acidity, and TSS values attributed to compounds' decompartmentalization were found. PME activity was partially inactivated by HHP-treatment at 600 MPa/10 min (22% of inactivation) and PEF-treatment at 200 Hz/168.4 kJ/L (19% of inactivation). Increment in vitamin C and TPC was also observed. The highest increment in TPC (79% of increment) and vitamin C (77% of increment) was observed with PEF at 200 Hz/168.4 kJ/L. The putative effect of HHP and PEF on microbial safety, enzyme inactivation, and phytochemical retention is also discussed in detail. In conclusion, HHP and PEF improve phytochemical compounds' content, microbial safety, and quality of black/red raspberry juice.

3.
Biosensors (Basel) ; 11(11)2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34821626

RESUMO

The use of sensors in critical areas for human development such as water, food, and health has increased in recent decades. When the sensor uses biological recognition, it is known as a biosensor. Nowadays, the development of biosensors has been increased due to the need for reliable, fast, and sensitive techniques for the detection of multiple analytes. In recent years, with the advancement in nanotechnology within biocatalysis, enzyme-based biosensors have been emerging as reliable, sensitive, and selectively tools. A wide variety of enzyme biosensors has been developed by detecting multiple analytes. In this way, together with technological advances in areas such as biotechnology and materials sciences, different modalities of biosensors have been developed, such as bi-enzymatic biosensors and nanozyme biosensors. Furthermore, the use of more than one enzyme within the same detection system leads to bi-enzymatic biosensors or multi-enzyme sensors. The development and synthesis of new materials with enzyme-like properties have been growing, giving rise to nanozymes, considered a promising tool in the biosensor field due to their multiple advantages. In this review, general views and a comparison describing the advantages and disadvantages of each enzyme-based biosensor modality, their possible trends and the principal reported applications will be presented.


Assuntos
Técnicas Biossensoriais , Alimentos , Nanotecnologia , Água
4.
Foods ; 10(8)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34441644

RESUMO

High-pressure processing (HPP) is a nonthermal technology used for food preservation capable of generating pasteurized milk products. There is much information regarding the inactivation of microorganisms in milk by HPP, and it has been suggested that 600 MPa for 5 min is adequate to reduce the number of log cycles by 5-7, resulting in safe products comparable to traditionally pasteurized ones. However, there are many implications regarding physicochemical and functional properties. This review explores the potential of HPP to preserve milk, focusing on the changes in milk components such as lipids, casein, whey proteins, and minerals, and the impact on their functional and physicochemical properties, including pH, color, turbidity, emulsion stability, rheological behavior, and sensory properties. Additionally, the effects of these changes on the elaboration of dairy products such as cheese, cream, and buttermilk are explored.

5.
Plants (Basel) ; 10(2)2021 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-33672994

RESUMO

Cacti fruits are known to possess antioxidant and antiproliferative activities among other health benefits. The following paper evaluated the antioxidant capacity and bioactivity of five clarified juices from different cacti fruits (Stenocereus spp., Opuntia spp. and M. geomettizans) on four cancer cell lines as well as one normal cell line. Their antioxidant compositions were measured by three different protocols. Their phenolic compositions were quantified through high performance liquid chromatography and the percentages of cell proliferation of fibroblasts as well as breast, prostate, colorectal, and liver cancer cell lines were evaluated though in vitro assays. The results were further processed by principal component analysis. The clarified juice from M. geomettizans fruit showed the highest concentration of total phenolic compounds and induced cell death in liver and colorectal cancer cells lines as well as fibroblasts. The clarified juice extracted from yellow Opuntia ficus-indica fruit displayed antioxidant activity as well as a selective cytotoxic effect on a liver cancer cell line with no toxic effect on fibroblasts. In conclusion, the work supplies evidence on the antioxidant and antiproliferative activities that cacti juices possess, presenting potential as cancer cell proliferation preventing agents.

6.
Plants (Basel) ; 9(11)2020 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-33266445

RESUMO

Mexico has a great diversity of cacti, however, many of their fruits have not been studied in greater depth. Several bioactive compounds available in cacti juices extract have demonstrated nutraceutical properties. Two cactus species are interesting for their biologically active pigments, which are chico (Pachycereus weberi (J. M. Coult.) Backeb)) and jiotilla (Escontria chiotilla (Weber) Rose)). Hence, the goal of this work was to evaluate the bioactive compounds, i.e., betalains, total phenolic, vitamin C, antioxidant, and mineral content in the extract of the above-mentioned P. weberi and E. chiotilla. Then, clarified extracts were evaluated for their antioxidant activity and cytotoxicity (cancer cell lines) potentialities. Based on the obtained results, Chico fruit extract was found to be a good source of vitamin C (27.19 ± 1.95 mg L-Ascorbic acid/100 g fresh sample). Moreover, chico extract resulted in a high concentration of micronutrients, i.e., potassium (517.75 ± 16.78 mg/100 g) and zinc (2.46 ± 0.65 mg/100 g). On the other hand, Jiotilla has a high content of biologically active pigment, i.e., betaxanthins (4.17 ± 0.35 mg/g dry sample). The antioxidant activities of clarified extracts of chico and jiotilla were 80.01 ± 5.10 and 280.88 ± 7.62 mg/100 g fresh sample (DPPH method), respectively. From the cytotoxicity perspective against cancer cell lines, i.e., CaCo-2, MCF-7, HepG2, and PC-3, the clarified extracts of chico showed cytotoxicity (%cell viability) in CaCo-2 (49.7 ± 0.01%) and MCF-7 (45.56 ± 0.05%). A normal fibroblast cell line (NIH/3T3) was used, as a control, for comparison purposes. While jiotilla extract had cytotoxicity against HepG2 (47.31 ± 0.03%) and PC-3 (53.65 ± 0.04%). These results demonstrated that Chico and jiotilla are excellent resources of biologically active constituents with nutraceuticals potentialities.

7.
Int J Biol Macromol ; 161: 1099-1116, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32526298

RESUMO

Lignocellulosic material has drawn significant attention among the scientific community due to its year-round availability as a renewable resource for industrial consumption. Being an economic substrate alternative, various industries are reevaluating processes to incorporate derived compounds from these materials. Varieties of fungi and bacteria have the ability to depolymerize lignocellulosic biomass by synthesizing degrading enzymes. Owing to catalytic activity stability and high yields of conversion, lignocellulolytic enzymes derived from fungi currently have a high spectrum of industrial applications. Moreover, these materials are cost effective, eco-friendly and nontoxic while having a low energy input. Techno-economic analysis for current enzyme production technologies indicates that synthetic production is not commercially viable. Instead, the economic projection of the use of naturally-produced ligninolytic enzymes is promising. This approach may improve the economic feasibility of the process by lowering substrate expenses and increasing lignocellulosic by-product's added value. The present review will discuss the classification and enzymatic degradation pathways of lignocellulolytic biomass as well as the potential and current industrial applications of the involved fungal enzymes.


Assuntos
Biomassa , Biotransformação , Celulases/química , Fungos/metabolismo , Lignina/química , Bactérias/enzimologia , Bactérias/metabolismo , Fungos/enzimologia , Hidrólise , Engenharia de Proteínas , Resíduos
8.
Int Microbiol ; 23(2): 201-214, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31321599

RESUMO

A novel pigmented bacterium, initially identified as 11E, was isolated from a site historically known to have various iron-related ores. Phylogenetic analysis of this bacterial strain showed that it belongs to Serratia marcescens. This pigmented S. marcescens 11E cultured individually with glucose, acetate, and glycerol as electron donors along with the soluble electron acceptor iron (Fe) (III) citrate offered a large reduction extent (45.3 %, 31.4 %, and 13.5 %, respectively). On the other hand, when iron oxide (Fe2O3) is used as electron acceptor, the pigmented strain produced a null reduction extent. Surprisingly, the absence of prodigiosin on the bacterial surface (non-pigmented strain) resulted in a large reduction extent of the non-soluble iron form (20-49%). All these extents were comparable and, in some cases, superior to those presented in the literature. Additionally, in the present study, it was found that anthraquinone sulfonate (AQS) stimulated Fe(III) reduction of soluble and non-soluble Fe species only with pigmented S. marcescens. In contrast, in the culture media with the non-pigmented strain, the presence of AQS did not stimulate the Fe(III) reduction. These results suggest that the pigmented phenotype of S. marcescens 11E may perform non-soluble Fe(III) reduction by electron shuttling. In contrast, for the non-pigmented phenotype of this bacterium, non-soluble Fe(III) reduction seems to proceed by direct contact. Our study demonstrates that this bacterium may be used in bioreduction process of heavy metals or as a biocatalyst in bioelectrochemical devices.


Assuntos
Compostos Férricos/metabolismo , Prodigiosina/metabolismo , Serratia marcescens , Enzimas , Filogenia , RNA Ribossômico 16S/genética , Serratia marcescens/genética , Serratia marcescens/isolamento & purificação , Serratia marcescens/metabolismo
9.
Mar Drugs ; 17(8)2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31394767

RESUMO

Several factors have the potential to influence microalgae growth. In the present study, nitrogen concentration and light intensity were evaluated in order to obtain high biomass production and high phycoerythrin accumulation from Porphyridium purpureum. The range of nitrogen concentrations evaluated in the culture medium was 0.075-0.450 g L-1 and light intensities ranged between 30 and 100 µmol m-2 s-1. Surprisingly, low nitrogen concentration and high light intensity resulted in high biomass yield and phycoerythrin accumulation. Thus, the best biomass productivity (0.386 g L-1 d-1) and biomass yield (5.403 g L-1) were achieved with NaNO3 at 0.075 g L-1 and 100 µmol m-2 s-1. In addition, phycoerythrin production was improved to obtain a concentration of 14.66 mg L-1 (2.71 mg g-1 of phycoerythrin over dry weight). The results of the present study indicate that it is possible to significantly improve biomass and pigment production in Porphyridium purpureum by limiting nitrogen concentration and light intensity.


Assuntos
Nitrogênio/farmacologia , Ficoeritrina/metabolismo , Porphyridium/efeitos dos fármacos , Porphyridium/crescimento & desenvolvimento , Biomassa , Meios de Cultura/metabolismo , Luz , Microalgas/efeitos dos fármacos , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo
10.
Sci Total Environ ; 665: 358-366, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30772566

RESUMO

Owing to the controlled or uncontrolled industrial wastewater disposal, pharmaceutical-based hazardous emerging contaminants (ECs) can be found in the environment all over the world. With ever-increasing socioeconomic aspects and environmental awareness, people are now more concerns about the widespread occurrences of hazardous and persistent contaminants, around the globe. In this context, several studies have already shown that various types of emerging and/or re-emerging contaminants, regardless the source, type and concentration, are of supreme threat to the living system of flora and fauna. Recently, algae-based bioreactors have gained special research interest as a promising way to remove pharmaceuticals-based ECs from the wastewater either partially or completely. This paper covers the progress on the removal of selected pharmaceuticals using bioreactors. In laboratory scale studies, high removal percentages have been reached for most selected pharmaceuticals, but data on full-scale bioreactors is limited. In this paper, two types of bioreactors are discussed, i.e., (1) open pond and (2) bubble column photobioreactor, which are considered sustainable and an effective alternative to remove ECs. In these bioreactors, high removal percentages (>90%) have been found for metoprolol, triclosan, and salicylic acid, moderate (50-90%) for carbamazepine and tramadol and very low (<10%) for trimethoprim and ciprofloxacin by inoculating different microalgae. This technique may open new opportunities for the treatment of wastewater and reduce the environmental pollution that can have adverse effects on the ecosystem and human health. In summary, the present review focuses on the microalgae for wastewater remediation. An effort has also been made to describe the generalities of the photobioreactor.


Assuntos
Recuperação e Remediação Ambiental/métodos , Microalgas/metabolismo , Poluentes da Água/metabolismo , Ecossistema , Poluentes da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA