Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ecol ; 23(8): 1979-93, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24834503

RESUMO

Pathogens, which have recently colonized a new host species or new populations of the same host, are interesting models for understanding how populations may evolve in response to novel environments. During its colonization of South America from Africa, Plasmodium falciparum, the main agent of malaria, has been exposed to new conditions in distinctive new human populations (Amerindian and populations of mixed origins) that likely exerted new selective pressures on the parasite's genome. Among the genes that might have experienced strong selective pressures in response to these environmental changes, the eba genes (erythrocyte-binding antigens genes), which are involved in the invasion of the human red blood cells, constitute good candidates. In this study, we analysed, in South America, the polymorphism of three eba genes (eba-140, eba-175, eba-181) and compared it to the polymorphism observed in African populations. The aim was to determine whether these genes faced selective pressures in South America distinct from what they experienced in Africa. Patterns of genetic variability of these genes were compared to the patterns observed at two housekeeping genes (adsl and serca) and 272 SNPs to separate adaptive effects from demographic effects. We show that, conversely to Africa, eba-140 seemed to be under stronger diversifying selection in South America than eba-175. In contrast, eba-181 did not show any sign of departure from neutrality. These changes in the patterns of selection on the eba genes could be the consequence of changes in the host immune response, the host receptor polymorphisms and/or the ability of the parasite to silence or express differentially its invasion proteins.


Assuntos
Antígenos de Protozoários/genética , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Seleção Genética , África , Proteínas de Transporte/genética , DNA de Protozoário/genética , Eritrócitos/parasitologia , Genética Populacional , Humanos , Proteínas de Membrana , Dados de Sequência Molecular , Análise de Sequência de DNA , América do Sul
2.
Mol Ecol ; 20(15): 3116-27, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21722225

RESUMO

Leishmania species of the subgenus Viannia and especially Leishmania Viannia guyanensis are responsible for a large proportion of New World leishmaniasis cases. Since a recent publication on Leishmania Viannia braziliensis, the debate on the mode of reproduction of Leishmania parasites has been reopened. A predominant endogamic reproductive mode (mating with relatives), together with strong Wahlund effects (sampling of strains from heterogeneous subpopulations), was indeed evidenced. To determine whether this hypothesis can be generalized to other Leishmania Viannia species, we performed a population genetic study on 153 human strains of L. (V.) guyanensis from French Guiana based on 12 microsatellite loci. The results revealed important homozygosity and very modest linkage disequilibrium, which is in agreement with a high level of sexual recombination and substantial endogamy. These results also revealed a significant isolation by distance with relatively small neighbourhoods and hence substantial viscosity of Leishmania populations in French Guiana. These results are of epidemiological relevance and suggest a major role for natural hosts and/or vectors in parasite strain diffusion across the country as compared to human hosts.


Assuntos
Genética Populacional/métodos , Leishmania guyanensis/genética , Leishmania guyanensis/fisiologia , Reprodução , Simulação por Computador , DNA de Protozoário/genética , Guiana Francesa , Variação Genética , Técnicas de Genotipagem , Humanos , Leishmaniose Mucocutânea/parasitologia , Desequilíbrio de Ligação , Repetições de Microssatélites , Isolamento Reprodutivo
3.
Proc Natl Acad Sci U S A ; 106(25): 10224-9, 2009 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-19497885

RESUMO

Leishmania species of the subgenus Viannia and especially Leishmania braziliensis are responsible for a large proportion of New World leishmaniasis cases. The reproductive mode of Leishmania species has often been assumed to be predominantly clonal, but remains unsettled. We have investigated the genetic polymorphism at 12 microsatellite loci on 124 human strains of Leishmania braziliensis from 2 countries, Peru and Bolivia. There is substantial genetic diversity, with an average of 12.4 +/- 4.4 alleles per locus. There is linkage disequilibrium at a genome-wide scale, as well as a substantial heterozygote deficit (more than 50% the expected value from Hardy-Weinberg equilibrium), which indicates high levels of inbreeding. These observations are inconsistent with a strictly clonal model of reproduction, which implies excess heterozygosity. Moreover, there is large genetic heterogeneity between populations within countries (Wahlund effect), which evinces a strong population structure at a microgeographic scale. Our findings are compatible with the existence of population foci at a microgeographic scale, where clonality alternates with sexuality of an endogamic nature, with possible occasional recombination events between individuals of different genotypes. These findings provide key clues on the ecology and transmission patterns of Leishmania parasites.


Assuntos
Leishmania braziliensis/genética , Animais , Bolívia , Heterozigoto , Humanos , Desequilíbrio de Ligação , Repetições de Microssatélites/genética , Peru , Polimorfismo Genético , Reprodução/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA