Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(6)2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37367535

RESUMO

Yarrowia lipolytica is a dimorphic fungus used as a model organism to investigate diverse biotechnological and biological processes, such as cell differentiation, heterologous protein production, and bioremediation strategies. However, little is known about the biological processes responsible for cation concentration homeostasis. Metals play pivotal roles in critical biochemical processes, and some are toxic at unbalanced intracellular concentrations. Membrane transport proteins control intracellular cation concentrations. Analysis of the Y. lipolytica genome revealed a characteristic functional domain of the cation efflux protein family, i.e., YALI0F19734g, which encodes YALI0F19734p (a putative Yl-Dmct protein), which is related to divalent metal cation tolerance. We report the in silico analysis of the putative Yl-Dmct protein's characteristics and the phenotypic response to divalent cations (Ca2+, Cu2+, Fe2+, and Zn2+) in the presence of mutant strains, Δdmct and Rdmct, constructed by deletion and reinsertion of the DMCT gene, respectively. The absence of the Yl-Dmct protein induces cellular and growth rate changes, as well as dimorphism differences, when calcium, copper, iron, and zinc are added to the cultured medium. Interestingly, the parental and mutant strains were able to internalize the ions. Our results suggest that the protein encoded by the DMCT gene is involved in cell development and cation homeostasis in Y. lipolytica.

2.
J Fungi (Basel) ; 8(8)2022 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-36012801

RESUMO

Smut fungi comprise a large group of biotrophic phytopathogens infecting important crops, such as wheat and corn. U. maydis is a plant pathogenic fungus responsible for common smut in maize and teocintle. Through our analysis of the transcriptome of the yeast-to-mycelium dimorphic transition at acid pH, we determined the number of genes encoding chitin deacetylases of the fungus, and observed that the gene encoding one of them (UMAG_11922; CDA1) was the only one up-regulated. The mutation of this gene and the analysis of the mutants revealed that they contained reduced amounts of chitosan, were severely affected in their virulence, and showed aberrant mycelial morphology when grown at acid pH. When the CDA1 gene was reinserted into the mutants by the use of an autonomous replication plasmid, virulence and chitosan levels were recovered in the retro mutant strains, indicating that the CDA1 gene was involved in these features. These data revealed that chitosan plays a crucial role in the structure and morphogenesis of the cell wall during mycelial development of the fungus, and that in its absence, the cell wall becomes altered and is unable to support the stress imposed by the defense mechanism mounted on by the plant host during the infection process.

3.
Front Microbiol ; 12: 680290, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093501

RESUMO

Cell death is a process that can be divided into three morphological patterns: apoptosis, autophagy and necrosis. In fungi, cell death is induced in response to intracellular and extracellular perturbations, such as plant defense molecules, toxins and fungicides, among others. Ustilago maydis is a dimorphic fungus used as a model for pathogenic fungi of animals, including humans, and plants. Here, we reconstructed the transcriptional regulatory network of U. maydis, through homology inferences by using as templates the well-known gene regulatory networks (GRNs) of Saccharomyces cerevisiae, Aspergillus nidulans and Neurospora crassa. Based on this GRN, we identified transcription factors (TFs) as hubs and functional modules and calculated diverse topological metrics. In addition, we analyzed exhaustively the module related to cell death, with 60 TFs and 108 genes, where diverse cell proliferation, mating-type switching and meiosis, among other functions, were identified. To determine the role of some of these genes, we selected a set of 11 genes for expression analysis by qRT-PCR (sin3, rlm1, aif1, tdh3 [isoform A], tdh3 [isoform B], ald4, mca1, nuc1, tor1, ras1, and atg8) whose homologues in other fungi have been described as central in cell death. These genes were identified as downregulated at 72 h, in agreement with the beginning of the cell death process. Our results can serve as the basis for the study of transcriptional regulation, not only of the cell death process but also of all the cellular processes of U. maydis.

4.
J Fungi (Basel) ; 7(2)2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33525315

RESUMO

The role of the Ustilago maydis putative homolog of the transcriptional repressor ScNRG1, previously described in Saccharomyces cerevisiae, Candida albicans and Cryptococcus neoformans, was analyzed by means of its mutation. In S. cerevisiae this gene regulates a set of stress-responsive genes, and in C. neoformans it is involved in pathogenesis. It was observed that the U. maydisNRG1 gene regulates several aspects of the cell response to acid pH, such as the production of mannosyl-erythritol lipids, inhibition of the expression of the siderophore cluster genes, filamentous growth, virulence and oxidative stress. A comparison of the gene expression pattern of the wild type strain versus the nrg1 mutant strain of the fungus, through RNA Seq analyses, showed that this transcriptional factor alters the expression of 368 genes when growing at acid pH (205 up-regulated, 163 down-regulated). The most relevant genes affected by NRG1 were those previously reported as the key ones for particular cellular stress responses, such as HOG1 for osmotic stress and RIM101 for alkaline pH. Four of the seven genes included WCO1 codifying PAS domain ( These has been shown as the key structural motif involved in protein-protein interactions of the circadian clock, and it is also a common motif found in signaling proteins, where it functions as a signaling sensor) domains sensors of blue light, two of the three previously reported to encode opsins, one vacuolar and non-pH-responsive, and another one whose role in the acid pH response was already known. It appears that all these light-reactive cell components are possibly involved in membrane potential equilibrium and as virulence sensors. Among previously described specific functions of this transcriptional regulator, it was found to be involved in glucose repression, metabolic adaptation to adverse conditions, cellular transport, cell rescue, defense and interaction with an acidic pH environment.

5.
Arch Microbiol ; 202(8): 2221-2232, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32529509

RESUMO

We report the characterization of the gene UMAG_00031 from Ustilago maydis, previously identified as upregulated at alkaline pH. This gene is located on chromosome 1 and contains an ORF of 1539 bp that encodes a putative protein of 512 amino acids with an MW of 54.8 kDa. The protein is predicted to contain seven transmembrane domains (TMDs) and a signal peptide suggesting that is located in the cell membrane. Null ΔUMAG_00031 mutants were constructed, and their phenotype was analyzed. The mutant displayed a pleiotropic phenotype suggesting its participation in processes of alkaline pH adaptation independent of the Pal/Rim pathway. Also, it was involved in the dimorphic process induced by fatty acids. These results indicate that the protein encoded by the UMAG_00031 gene possibly functions as a receptor of different signals in the cell membrane of the fungus.


Assuntos
Genes Fúngicos/genética , Proteínas de Membrana/genética , Morfogênese/genética , Ustilago/genética , Ustilago/metabolismo , Adaptação Fisiológica/genética , Proteínas Fúngicas/genética , Concentração de Íons de Hidrogênio , Fenótipo , Regulação para Cima
6.
Artigo em Inglês | MEDLINE | ID: mdl-32110899

RESUMO

In the reproductive phase, women experience cyclic changes in the ovaries and uterus, and hormones regulate these changes. Menopause is the permanent loss of menstruation after 12 months of amenorrhea. Menopause is also linked to a decrease in estrogen production, causing an imbalance in oxidative stress. We aimed to compare the three stages of lipid peroxidation, protein oxidative damage, and total antioxidant capacity (TAC) between reproductive-aged women (RAW) and postmenopausal women (PMW) in Mexico. We carried out a cross-sectional study with 84 women from Mexico City, including 40 RAW and 44 PMW. To determine the oxidative stress of the participants, several markers of lipid damage were measured: dienes conjugates (DC), lipohydroperoxides (LHP), and malondialdehyde (MDA); exposure to protein carbonyl is indicative of oxidative modified proteins, and TAC is indicative of the antioxidant defense system. Biomarkers of oxidative stress were significantly lower in RAW vs. PMW. DC were 1.31 ± 0.65 vs. 1.7 ± 0.51 pmol DC/mg dry weight (p = 0.0032); LHP were 4.95 ± 2.20 vs. 11.30 ± 4.24 pmol LHP/mg dry weight (p < 0.0001); malondialdehyde was 20.37 ± 8.20 vs. 26.10 ± 8.71 pmol MDA/mg dry weight (p = 0.0030); exposure of protein carbonyl was 3954 ± 884 vs. 4552 ± 1445 pmol PC/mg protein (p = 0.042); and TAC was 7244 ± 1512 vs. 8099 ± 1931 pmol Trolox equivalent/mg protein (p = 0.027). PMW display significantly higher oxidative stress markers compared to RAW; likewise, PMW show a higher TAC.


Assuntos
Peroxidação de Lipídeos , Estresse Oxidativo , Pós-Menopausa , Reprodução , Adulto , Antioxidantes , Estudos Transversais , Feminino , Humanos , Malondialdeído , México , Pessoa de Meia-Idade , Pós-Menopausa/fisiologia , Reprodução/fisiologia , Adulto Jovem
7.
Int Microbiol ; 23(1): 121-126, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31915950

RESUMO

In the present manuscript, we describe the mechanisms involved in the yeast-to-hypha dimorphic transition of the plant pathogenic Basidiomycota fungus Ustilago maydis. During its life cycle, U. maydis presents two stages: one in the form of haploid saprophytic yeasts that divide by budding and the other that is the product of the mating of sexually compatible yeast cells (sporidia), in the form of mycelial dikaryons that invade the plant host. The occurrence of the involved dimorphic transition is controlled by the two mating loci a and b. In addition, the dimorphic event can be obtained in vitro by different stimuli: change in the pH of the growth medium, use of different carbon sources, and by nitrogen depletion. The presence of other factors and mechanisms may affect this phenomenon; among these, we may cite the PKA and MAPK signal transduction pathways, polyamines, and factors that affect the structure of the nucleosomes. Some of these factors and conditions may affect all these dimorphic events, or they may be specific for only one or more but not all the processes involved. The conclusion reached by these experiments is that U. maydis has constituted a useful model for the analysis of the mechanisms involved in cell differentiation of fungi in general.


Assuntos
Transdução de Sinais , Ustilago/citologia , Ustilago/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metilação de DNA , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histidina Quinase/metabolismo , Histona Acetiltransferases/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Poliaminas/metabolismo
8.
Arch Microbiol ; 202(1): 93-103, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31485712

RESUMO

We have described that formation of basidiocarps by Ustilago maydis requires illumination. In the current research, we have proceeded to analyze what kind of light receptors are involved in this phenomenon. Accordingly, we investigated whether the homologues of the White Collar (WC), and the phytochrome (PHY) genes played a role in this process. Mutants deficient in either one of the three U. maydis WC homologue genes (WCO1a, WCO1b, WCO2), or the phytochrome-encoding the PHY gene were obtained. Phenotypic analysis of the mutants showed that ∆wco1a mutants formed similar numbers of basidiocarps than wild-type strain, whereas ∆wco1b mutants were severely affected in basidiocarp formation when illuminated with white, blue or red light. ∆wco2 and ∆phy1 mutants did not form basidiocarps under any illumination condition. These data indicate that Wco1a is the main blue light receptor, and Wco1b may operate as a secondary blue light receptor; Phy1 is the red light receptor, and Wco2 the transcription factor that controls the photo stimulation of the genes involved in the formation of fruiting bodies. It is suggested that effectiveness of the light receptors depends on the whole structure of the complex, possibly, because their association is necessary to maintain their functional structure.


Assuntos
Carpóforos/fisiologia , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Fotorreceptores Microbianos/genética , Fotorreceptores Microbianos/metabolismo , Ustilago/fisiologia , Carpóforos/efeitos da radiação , Ustilago/genética , Ustilago/efeitos da radiação
9.
Arch Microbiol ; 201(7): 991-998, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31025056

RESUMO

Caffeine is a compound that can exert physiological-beneficial effects in the organism. Nevertheless, there are controversies about its protective-antioxidant and/or its negative genotoxic effect. To abound on the analysis of the possible genotoxic/antioxidant effect of caffeine, we used as research model the yeast Yarrowia lipolytica parental strain, and mutant strains (∆rad52 and ∆ku80), which are deficient in the DNA repair mechanisms. Caffeine (5 mM) showed a cytostatic effect on all strains, but after 72 h of incubation the parental and ∆ku80 strains were able to recover of this inhibitory effect on growth, whereas ∆rad52 was unable to recover. When cells were pre-incubated with caffeine and H2O2 or incubated with a mixture of both agents, a higher inhibitory effect on growth of mutant strains was observed and this effect was noticeably greater for the Δrad52 strain. The toxic effect of caffeine appears to be through a mechanism of DNA damage (genotoxic effect) that involves DSB generation since, in all tested conditions, the growth of Δrad52 strain (cells deficient in HR DNA repair mechanism) was more severely affected.


Assuntos
Cafeína/toxicidade , Reparo do DNA/genética , Yarrowia/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Peróxido de Hidrogênio/farmacologia , Mutação/genética , Yarrowia/genética , Yarrowia/crescimento & desenvolvimento
10.
Rev Iberoam Micol ; 34(4): 192-202, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28732778

RESUMO

The Mitogen-Activated Protein Kinase (MAPK) signaling pathways constitute one of the most important and evolutionarily conserved mechanisms for the perception of extracellular information in all the eukaryotic organisms. The MAPK pathways are involved in the transfer to the cell of the information perceived from extracellular stimuli, with the final outcome of activation of different transcription factors that regulate gene expression in response to them. In all species of fungi, the MAPK pathways have important roles in their physiology and development; e.g. cell cycle control, mating, morphogenesis, response to different stresses, resistance to UV radiation and to temperature changes, cell wall assembly and integrity, degradation of cellular organelles, virulence, cell-cell signaling, fungus-plant interaction, and response to damage-associated molecular patterns (DAMPs). Considering the importance of the phylogenetically conserved MAPK pathways in fungi, an updated review of the knowledge on them is discussed in this article. This information reveals their importance, their distribution in fungal species evolutionarily distant and with different lifestyles, their organization and function, and the interactions occurring between different MAPK pathways, and with other signaling pathways, for the regulation of the most complex cellular processes.


Assuntos
Proteínas Fúngicas/fisiologia , Fungos/enzimologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases Ativadas por Mitógeno/fisiologia , Sequência de Aminoácidos , Sequência Conservada , Fungos/genética , Fungos/crescimento & desenvolvimento , Fungos/patogenicidade , Proteínas de Ligação ao GTP/fisiologia , Regulação Fúngica da Expressão Gênica/fisiologia , Modelos Biológicos , Morfogênese/fisiologia , Filogenia , Receptores Acoplados a Proteínas G/fisiologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais/fisiologia , Fatores de Transcrição/fisiologia , Virulência/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA