Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Parasit Vectors ; 16(1): 167, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217925

RESUMO

BACKGROUND: Chagas disease (CD), caused by the parasite Trypanosoma cruzi, is a serious public health concern in Latin America. Nifurtimox and benznidazole (BZ), the only two drugs currently approved for the treatment of CD, have very low efficacies in the chronic phase of the disease and several toxic side effects. Trypanosoma cruzi strains that are naturally resistant to both drugs have been reported. We performed a comparative transcriptomic analysis of wild-type and BZ-resistant T. cruzi populations using high-throughput RNA sequencing to elucidate the metabolic pathways related to clinical drug resistance and identify promising molecular targets for the development of new drugs for treating CD. METHODS: All complementary DNA (cDNA) libraries were constructed from the epimastigote forms of each line, sequenced and analysed using the Prinseq and Trimmomatic tools for the quality analysis, STAR as the aligner for mapping the reads against the reference genome (T. cruzi Dm28c-2018), the Bioconductor package EdgeR for statistical analysis of differential expression and the Python-based library GOATools for the functional enrichment analysis. RESULTS: The analytical pipeline with an adjusted P-value of < 0.05 and fold-change > 1.5 identified 1819 transcripts that were differentially expressed (DE) between wild-type and BZ-resistant T. cruzi populations. Of these, 1522 (83.7%) presented functional annotations and 297 (16.2%) were assigned as hypothetical proteins. In total, 1067 transcripts were upregulated and 752 were downregulated in the BZ-resistant T. cruzi population. Functional enrichment analysis of the DE transcripts identified 10 and 111 functional categories enriched for the up- and downregulated transcripts, respectively. Through functional analysis we identified several biological processes potentially associated with the BZ-resistant phenotype: cellular amino acid metabolic processes, translation, proteolysis, protein phosphorylation, RNA modification, DNA repair, generation of precursor metabolites and energy, oxidation-reduction processes, protein folding, purine nucleotide metabolic processes and lipid biosynthetic processes. CONCLUSIONS: The transcriptomic profile of T. cruzi revealed a robust set of genes from different metabolic pathways associated with the BZ-resistant phenotype, proving that T. cruzi resistance mechanisms are multifactorial and complex. Biological processes associated with parasite drug resistance include antioxidant defenses and RNA processing. The identified transcripts, such as ascorbate peroxidase (APX) and iron superoxide dismutase (Fe-SOD), provide important information on the resistant phenotype. These DE transcripts can be further evaluated as molecular targets for new drugs against CD.


Assuntos
Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Tripanossomicidas/farmacologia , Transcriptoma , Perfilação da Expressão Gênica , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia
2.
Front Cell Infect Microbiol ; 11: 653670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33996631

RESUMO

Neglected Tropical Diseases include a broad range of pathogens, hosts, and vectors, which represent evolving complex systems. Leishmaniasis, caused by different Leishmania species and transmitted to humans by sandflies, are among such diseases. Leishmania and other Trypanosomatidae display some peculiar features, which make them a complex system to study. Leishmaniasis chemotherapy is limited due to high toxicity of available drugs, long-term treatment protocols, and occurrence of drug resistant parasite strains. Systems biology studies the interactions and behavior of complex biological processes and may improve knowledge of Leishmania drug resistance. System-level studies to understand Leishmania biology have been challenging mainly because of its unusual molecular features. Networks integrating the biochemical and biological pathways involved in drug resistance have been reported in literature. Antioxidant defense enzymes have been identified as potential drug targets against leishmaniasis. These and other biomarkers might be studied from the perspective of systems biology and systems parasitology opening new frontiers for drug development and treatment of leishmaniasis and other diseases. Our main goals include: 1) Summarize current advances in Leishmania research focused on chemotherapy and drug resistance. 2) Share our viewpoint on the application of systems biology to Leishmania studies. 3) Provide insights and directions for future investigation.


Assuntos
Leishmania , Leishmaniose , Psychodidae , Animais , Resistência a Medicamentos , Humanos , Biologia de Sistemas
3.
Parasit Vectors ; 14(1): 273, 2021 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-34022931

RESUMO

BACKGROUND: Panstrongylus megistus is the most important vector of Chagas disease in Brazil. Studies show that the principal factor hindering the control of triatomines is reinfestation of houses previously treated with insecticides. Studies at the microgeographic level are therefore necessary to better understand these events. However, an efficient molecular marker is not yet available for carrying out such analyses in this species. The aim of the present study was to identify and characterize microsatellite loci for future population genetic studies of P. megistus. METHODS: This study work consisted of five stages: (i) sequencing of genomic DNA; (ii) assembly and selection of contigs containing microsatellites; (iii) validation of amplification and evaluation of polymorphic loci; (iv) standardization of the polymorphic loci; and (v) verification of cross-amplification with other triatomine species. RESULTS: Sequencing of males and females generated 7,908,463 contigs with a total length of 2,043,422,613 bp. A total of 2,043,690 regions with microsatellites in 1,441,091 contigs were obtained, with mononucleotide repeats being the most abundant class. From a panel of 96 loci it was possible to visualize polymorphisms in 64.55% of the loci. Of the 20 loci genotyped, the number of alleles varied from two to nine with an average of 4.9. Cross-amplification with other species of triatomines was observed in 13 of the loci. CONCLUSIONS: Due to the high number of alleles encountered, polymorphism and the capacity to amplify from geographically distant populations, the microsatellites described here show promise for utilization in population genetic studies of P. megistus.


Assuntos
Genética Populacional/métodos , Insetos Vetores/genética , Repetições de Microssatélites , Panstrongylus/genética , Animais , Brasil , Doença de Chagas/transmissão , Feminino , Masculino , Projetos de Pesquisa , Análise de Sequência de DNA
4.
Vaccine ; 39(20): 2755-2763, 2021 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-33875268

RESUMO

In Brazil, canine visceral leishmaniasis is an important public health problem due to its alarming growth. The high prevalence of infected dogs reinforces the need for a vaccine for use in prophylactic vaccination campaigns. In the present study, we evaluate the immunogenicity and protection of the best dose of Chimera A selected through the screening of cytokines production important in disease. BALB/c mice were vaccinated subcutaneously with three doses and challenged intravenously with 1 × 107L. infantum promastigotes. Spleen samples were collected to assess the intracellular cytokine profile production, T cell proliferation and parasite load. At first, three different doses of Chimera A (5 µg, 10 µg and 20 µg) were evaluated through the production of IFN-γ and IL-10 cytokines. Since the dose of 20 µg showed the best results, it was chosen to continue the study. Secondarily, Chimera A at dose of 20 µg was formulated with Saponin plus Monophosphoryl lipid A. Vaccination with Chimera A alone and formulated with SM adjuvant system was able to increase the percentage of the proliferation of specific T lymphocytes and stimulated a Th1 response with increased levels of IFN-γ, TNF-α and IL-2, and decreased of IL-4 and IL-10. The vaccine efficacy through real-time PCR demonstrated a reduction in the splenic parasite load in animals that received Chimera A formulated with the SM adjuvant system (92%). Additionally, we observed increased levels of nitric oxide in stimulated-culture supernatants. The Chimera A formulated with the SM adjuvant system was potentially immunogenic, being able to induce immunoprotective mechanisms and reduce parasite load. Therefore, the use of T-cell multi-epitope vaccine is promising against visceral leishmaniasis.


Assuntos
Leishmania infantum , Vacinas contra Leishmaniose , Leishmaniose Visceral , Adjuvantes Imunológicos , Animais , Antígenos de Protozoários , Brasil , Citocinas , Cães , Leishmaniose Visceral/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C
5.
Parasitol Res ; 120(2): 679-692, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33415401

RESUMO

Owing to the importance and clinical diversity of Leishmania infantum, studying its virulence factors is promising for understanding the relationship between parasites and hosts. In the present study, differentially abundant proteins from strains with different degrees of virulence in promastigote and amastigote forms were compared using two quantitative proteomics techniques, differential gel electrophoresis and isobaric mass tag labeling, followed by identification by mass spectrometry. A total of 142 proteins were identified: 96 upregulated and 46 downregulated proteins in the most virulent strain compared to less virulent. The interaction between the proteins identified in each evolutionary form was predicted. The results showed that in the amastigote form of the most virulent strain, there was a large group of proteins related to glycolysis, heat shock, and ribosomal proteins, whereas in the promastigote form, the group consisted of stress response, heat shock, and ribosomal proteins. In addition, biological processes related to metabolic pathways, ribosomes, and oxidative phosphorylation were enriched in the most virulent strain (BH400). Finally, we noted several proteins previously found to play important roles in L. infantum infection, which showed increased abundance in the virulent strain, such as ribosomal proteins, HSP70, enolase, fructose 1,6-biphosphate aldolase, peroxidoxin, and tryparedoxin peroxidase, many of which interact with each other.


Assuntos
Leishmania infantum/metabolismo , Leishmania infantum/patogenicidade , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Animais , Leishmania infantum/crescimento & desenvolvimento , Estágios do Ciclo de Vida , Proteômica , Virulência , Fatores de Virulência/metabolismo
6.
Parasit Vectors ; 13(1): 600, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33256787

RESUMO

BACKGROUND: One of the major challenges to leishmaniasis treatment is the emergence of parasites resistant to antimony. To study differentially expressed genes associated with drug resistance, we performed a comparative transcriptomic analysis between wild-type and potassium antimonyl tartrate (SbIII)-resistant Leishmania infantum lines using high-throughput RNA sequencing. METHODS: All the cDNA libraries were constructed from promastigote forms of each line, sequenced and analyzed using STAR for mapping the reads against the reference genome (L. infantum JPCM5) and DESeq2 for differential expression statistical analyses. All the genes were functionally annotated using sequence similarity search. RESULTS: The analytical pipeline considering an adjusted p-value < 0.05 and fold change > 2.0 identified 933 transcripts differentially expressed (DE) between wild-type and SbIII-resistant L. infantum lines. Out of 933 DE transcripts, 504 presented functional annotation and 429 were assigned as hypothetical proteins. A total of 837 transcripts were upregulated and 96 were downregulated in the SbIII-resistant L. infantum line. Using this DE dataset, the proteins were further grouped in functional classes according to the gene ontology database. The functional enrichment analysis for biological processes showed that the upregulated transcripts in the SbIII-resistant line are associated with protein phosphorylation, microtubule-based movement, ubiquitination, host-parasite interaction, cellular process and other categories. The downregulated transcripts in the SbIII-resistant line are assigned in the GO categories: ribonucleoprotein complex, ribosome biogenesis, rRNA processing, nucleosome assembly and translation. CONCLUSIONS: The transcriptomic profile of L. infantum showed a robust set of genes from different metabolic pathways associated with the antimony resistance phenotype in this parasite. Our results address the complex and multifactorial antimony resistance mechanisms in Leishmania, identifying several candidate genes that may be further evaluated as molecular targets for chemotherapy of leishmaniasis.


Assuntos
Antimônio/farmacologia , Antiprotozoários/farmacologia , Resistência a Medicamentos , Leishmania infantum/efeitos dos fármacos , Leishmania infantum/genética , Proteínas de Protozoários/genética , Animais , Leishmania infantum/metabolismo , Leishmania infantum/fisiologia , Proteínas de Protozoários/metabolismo , Transcriptoma/efeitos dos fármacos
7.
PLoS One ; 15(12): e0243840, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306749

RESUMO

Bone marrow (BM) is an organ responsible for crucial processes in living organs, e. g., hematopoiesis. In recent years, Organ-on-a-Chip (OoC) devices have been used to satisfy the need for in vitro systems that better mimic the phenomena occurring in the BM microenvironment. Given the growing interest in these systems and the diversity of developed devices, an integrative systematic literature review is required. We have performed this review, following the PRISMA method aiming to identify the main characteristics and assess the effectiveness of the devices that were developed to represent the BM. A search was performed in the Scopus, PubMed, Web of Science and Science Direct databases using the keywords (("bone marrow" OR "hematopoietic stem cells" OR "haematopoietic stem cells") AND ("organ in a" OR "lab on a chip" OR "microfluidic" OR "microfluidic*" OR ("bioreactor" AND "microfluidic*"))). Original research articles published between 2009 and 2020 were included in the review, giving a total of 21 papers. The analysis of these papers showed that their main purpose was to study BM cells biology, mimic BM niches, model pathological BM, and run drug assays. Regarding the fabrication protocols, we have observed that polydimethylsiloxane (PDMS) material and soft lithography method were the most commonly used. To reproduce the microenvironment of BM, most devices used the type I collagen and alginate. Peristaltic and syringe pumps were mostly used for device perfusion. Regarding the advantages compared to conventional methods, there were identified three groups of OoC devices: perfused 3D BM; co-cultured 3D BM; and perfused co-cultured 3D BM. Cellular behavior and mimicking their processes and responses were the mostly commonly studied parameters. The results have demonstrated the effectiveness of OoC devices for research purposes compared to conventional cell cultures. Furthermore, the devices have a wide range of applicability and the potential to be explored.


Assuntos
Biomimética/métodos , Medula Óssea/fisiologia , Dispositivos Lab-On-A-Chip , Microfluídica , Animais , Materiais Biocompatíveis/farmacologia , Humanos
8.
Sci Total Environ ; 740: 140135, 2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-32927573

RESUMO

The increasing human population requires ongoing efforts in food production. This is frequently associated with an increased use of agrochemicals, leading to environmental contamination and altering microbial communities, including human fungal pathogens that reside in the environment. Cryptococcus gattii is an environmental yeast and is one of the etiological agents of cryptococcosis. Benomyl (BEN) is a broad-spectrum fungicide used on several crops. To study the effects of agrochemicals on fungal pathogens, we first evaluated the susceptibility of C. gattii to BEN and the interactions with clinical antifungals. Antagonistic interaction between BEN and fluconazole was seen and was strain- and concentration-dependent. We then induced BEN-resistance by culturing strains in increasing drug concentrations. One strain demonstrated to be more resistant and showed increased multidrug efflux pump gene (MDR1) expression and increased rhodamine 6G efflux, leading to cross-resistance between BEN and fluconazole. Morphologically, BEN-adapted cells had a reduced polysaccharide capsule; an increased surface/volume ratio; increased growth rate in vitro and inside macrophages and also higher ability in crossing an in vitro model of blood-brain-barrier. BEN-adapted strain demonstrated to be hypervirulent in mice, leading to severe symptoms of cryptococcosis, early mortality and higher fungal burden in the organs, particularly the brain. The parental strain was avirulent in murine model. In vivo cross-resistance between BEN and fluconazole was observed, with mice infected with the adapted strain unable to present any improvement in survival and behavior when treated with this antifungal. Furthermore, BEN-adapted cells cultured in drug-free media maintained the hypervirulent and cross-resistant phenotype, suggesting a persistent effect of BEN on C. gattii. In conclusion, exposure to BEN induces cross-resistance with fluconazole and increases the virulence of C. gattii. Altogether, our results indicate that agrochemicals may lead to unintended consequences on non-target species and this could result in severe healthy problems worldwide.


Assuntos
Cryptococcus gattii , Fungicidas Industriais/farmacologia , Animais , Antifúngicos , Farmacorresistência Fúngica , Humanos , Camundongos , Testes de Sensibilidade Microbiana
9.
J Proteomics ; 227: 103919, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32721629

RESUMO

The proteins that have structural disorder exemplify a class of proteins which is part of a new frontier in structural biology that demands a new understanding of the paradigm of structure/function correlations. In order to address the location, relative distances and the functional/structural correlation between disordered and conserved domains, consensus disordered predictions were mapped together with CDD domains in Leishmania braziliensis M2904, Leishmania infantum JPCM5, Trypanosoma cruzi CL-Brener Esmeraldo-like, Trypanosoma cruzi Dm28c, Trypanosoma cruzi Sylvio X10, Blechomonas ayalai B08-376 and Paratrypanosoma confusum CUL13 predicted proteomes. Our results depicts the role of protein disorder in key aspects of parasites biology highlighting: a) statistical significant association between genome structural location of protein disordered consensus stretches and functional domains; b) that disordered protein stretches appear in greater percentage at upstream or downstream position of the predicted domain; c) a possible role of structural disorder in several gene expression, control points that includes but are not limited to: i) protein folding; ii) protein transport and degradation; and iii) protein modification. In addition, for values of protein with disorder content greater than 40%, a small percentage of protein binding sites in IDPs/IDRs, a higher hypothetical protein annotation frequency was observed than expected by chance and trypanosomatid multigene families linked with virulence are rich in protein with disorder content. SIGNIFICANCE: T. cruzi and Leishmania spp are the etiological agents of Chagas disease and leishmaniasis, respectively. Currently, no vaccine or effective drug treatment is available against these neglected diseases and the knowledge about the post-transcriptional and post-translational mechanisms of these organisms, which are key for this scenario, remain scarce. This study depicts the potential impact of the proximity between protein structural disorder and functional domains in the post-transcriptional regulation of pathogenic versus human non-pathogenic trypanosomatids. Our results revealed a significant statistical relationship between the genome structural locations of these two variables and disordered regions appearing more frequently at upstream or downstream positions of the CDD locus domain. This flexibility feature would maintain structural accessibility of functional sites for post-translational modifications, shedding light into this important aspect of parasite biology. This hypothesis is corroborated by the functional enrichment analysis of disordered proteins subset that highlight the involvement of this class of proteins in protein folding, protein transport and degradation and protein modification. Furthermore, our results pointed out: a) the impact of protein disorder in the process of genome annotation (proteins tend to be annotated as hypothetical when the disorder content reaches ~40%); b) that trypanosomatid multigenic families linked with virulence have a key protein disorder content.


Assuntos
Genoma , Trypanosoma cruzi , Mapeamento Cromossômico , Humanos , Dobramento de Proteína , Proteínas , Trypanosoma cruzi/genética
10.
Vaccines (Basel) ; 8(2)2020 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-32471081

RESUMO

Many vaccine candidates against visceral leishmaniasis (VL) have been proposed; however, to date, none of them have been efficacious for the human or canine disease. On this basis, the design of leishmaniasis vaccines has been constantly changing, and the use of approaches to select specific epitopes seems to be crucial in this scenario. The ability to predict T cell-specific epitopes makes immunoinformatics an even more necessary approach, as in VL an efficient immune response against the parasite is triggered by T lymphocytes in response to Leishmania spp. immunogenic antigens. Moreover, the success of vaccines depends on the capacity to generate long-lasting memory and polyfunctional cells that are able to eliminate the parasite. In this sense, our study used a combination of different approaches to develop potential chimera candidate vaccines against VL. The first point was to identify the most immunogenic epitopes of Leishmania infantum proteins and construct chimeras composed of Major histocompatibility complex (MHC) class I and II epitopes. For this, we used immunoinformatics features. Following this, we validated these chimeras in a murine model in a thorough memory study and multifunctionality of T cells that contribute to a better elucidation of the immunological protective mechanisms of polyepitope vaccines (chimera A and B) using multicolor flow cytometry. Our results showed that in silico-designed chimeras can elicit polyfunctional T cells producing T helper (Th)1 cytokines, a strong immune response against Leishmania antigen, and the generation of central and effector memory T cells in the spleen cells of vaccinated animals that was able to reduce the parasite burden in this organ. These findings contribute two potential candidate vaccines against VL that can be used in further studies, and help in this complex field of vaccine development against this challenging parasite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA