Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 11(11)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34828041

RESUMO

Cortisol is the main glucocorticoid hormone promoting compensatory metabolic responses of stress in teleosts. This hormone acts through genomic and membrane-initiated actions to exert its functions inside the cell. Experimental approaches, using exogenous cortisol administration, confirm the role of this hormone during short (minutes to hours)- and long-term (days to weeks) responses to stress. The role of membrane-initiated cortisol signaling during long-term responses has been recently explored. In this study, Sparus aurata were intraperitoneally injected with coconut oil alone or coconut oil containing cortisol, cortisol-BSA, or BSA. After 3 days of treatment, plasma, liver, and skeletal muscle were extracted. Plasma cortisol, as well as metabolic indicators in the plasma and tissues collected, and metabolism-related gene expression, were measured. Our results showed that artificially increased plasma cortisol levels in S. aurata enhanced plasma glucose and triacylglycerols values as well as hepatic substrate energy mobilization. Additionally, cortisol stimulated hepatic carbohydrates metabolism, as seen by the increased expression of metabolism-related genes. All of these responses, observed in cortisol-administered fish, were not detected by replicating the same protocol and instead using cortisol-BSA, which exclusively induces membrane-initiated effects. Therefore, we suggest that after three days of cortisol administration, only genomic actions are involved in the metabolic responses in S. aurata.

2.
Artigo em Inglês | MEDLINE | ID: mdl-31798534

RESUMO

Teleost fish are exposed to diverse stressors in farming and wildlife conditions during their lifespan. Cortisol is the main glucocorticoid hormone involved in the regulation of their metabolic acclimation under physiological stressful conditions. In this context, increased plasma cortisol is associated with energy substrate mobilization from metabolic tissues, such as liver and skeletal muscle, to rapidly obtain energy and cope with stress. The metabolic actions of cortisol have primarily been attributed to its genomic/classic action mechanism involving the interaction with intracellular receptors, and regulation of stress-responsive genes. However, cortisol can also interact with membrane components to activate rapid signaling pathways. In this work, using the teleost fish gilthead sea bream (Sparus aurata) as a model, we evaluated the effects of membrane-initiated cortisol actions on the early modulation of glucose metabolism. For this purpose, S. aurata juveniles were intraperitoneally administrated with cortisol and with its membrane impermeable analog, cortisol-BSA. After 1 and 6 h of each treatment, plasma cortisol levels were measured, together with glucose, glycogen and lactate in plasma, liver and skeletal muscle. Transcript levels of corticosteroids receptors (gr1, gr2, and mr) and key gluconeogenesis (g6pc and pepck)- and glycolysis (pgam1 and aldo) related genes in the liver were also measured. Cortisol and cortisol-BSA administration increased plasma cortisol levels in S. aurata 1 h after administration. Plasma glucose levels enhanced 6 h after each treatment. Hepatic glycogen content decreased in the liver at 1 h of both cortisol and cortisol-BSA administration, while increased at 6 h due to cortisol but not in response to cortisol-BSA. Expression of gr1, g6pc, pgam1, and aldo were preferentially increased by cortisol-BSA in the liver. Taking all these results in consideration, we suggest that non-canonical cortisol mechanisms contribute to the regulation of the early glucose metabolism responses to stress in S. aurata.

3.
Fish Physiol Biochem ; 41(1): 129-38, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25403153

RESUMO

This study investigated the effects of prolonged exposure of silver catfish (Rhamdia quelen) to the essential oil (EO) of Hesperozygis ringens. Ventilatory rate (VR), stress and metabolic indicators, energy enzyme activities, and mRNA expression of adenohypophyseal hormones were examined in specimens that were exposed for 6 h to 0 (control), 30 or 50 µL L(-1) EO of H. ringens in water. Reduction in VR was observed in response to each treatment, but no differences were found between treatments. Plasma glucose, protein, and osmolality increased in fish exposed to 50 µL L(-1). Moreover, lactate levels increased after exposure to both EO concentrations. Plasma cortisol levels were not changed by EO exposure. Fish exposed to 30 µL L(-1) EO exhibited higher glycerol-3-phosphate dehydrogenase (G3PDH) activity, while exposure to 50 µL L(-1) EO elicited an increase in glucose-6-phosphate dehydrogenase (G6PDH), fructose-biphosphatase (FBP), and 3-hydroxyacyl-CoA-dehydrogenase (HOAD) activities compared with the control group. Expression of growth hormone (GH) only decreased in fish exposed to 50 µL L(-1) EO, while somatolactin (SL) expression decreased in fish exposed to both concentrations of EO. Exposure to EO did not change prolactin expression. The results indicate that GH and SL are associated with energy reorganization in silver catfish. Fish were only slightly affected by 30 µL L(-1) EO of H. ringens, suggesting that it could be used in practices where a reduction in the movement of fish for prolonged periods is beneficial, i.e., such as during fish transportation.


Assuntos
Aquicultura/métodos , Peixes-Gato/fisiologia , Lamiaceae/química , Óleos Voláteis/efeitos adversos , Estresse Fisiológico/efeitos dos fármacos , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Análise de Variância , Animais , Glicemia/efeitos dos fármacos , Proteínas Sanguíneas/efeitos dos fármacos , Primers do DNA/genética , Proteínas de Peixes/metabolismo , Frutose-Bifosfatase/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Glicoproteínas/metabolismo , Hormônio do Crescimento/metabolismo , Hidrocortisona/metabolismo , Concentração Osmolar , Consumo de Oxigênio/efeitos dos fármacos , Hormônios Hipofisários/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/veterinária , Espectrofotometria/veterinária , Estresse Fisiológico/fisiologia
4.
PLoS One ; 9(12): e114233, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25469630

RESUMO

In this study, the protective effects of diphenyl diselenide [(PhSe)2] on quinclorac- induced toxicity were investigated in silver catfish (Rhamdia quelen). The fish were fed for 60 days with a diet in the absence or in the presence of 3.0 mg/Kg (PhSe)2. Animals were further exposed to 1 mg/L quinclorac for 8 days. At the end of experimental period, fish were euthanized and biopsies from liver and gills, as well as blood samples, were collected. The cortisol and metabolic parameters were determined in plasma, and those enzyme activities related to osmoregulation were assayed in the gills. In liver, some important enzyme activities of the intermediary metabolism and oxidative stress-related parameters, such as thiobarbituric acid-reactive substance (TBARS), protein carbonyl, catalase (CAT), superoxide dismutase (SOD), glutathione S-transferase (GST), nonprotein thiols (NPSH) and ascorbic acid contents were also evaluated. Compared to the control group, quinclorac exposure significantly decreased hepatosomatic index and increased cortisol and lactate values in plasma. Moreover, the activities of fructose biphosphatase (FBPase), glucose-6-phosphate dehydrogenase (G6Pase), glycogen phosphorilase (GPase) and aspartate aminotransferase (AST) were significantly increased in liver. Quinclorac also induced lipid peroxidation while the activity of SOD, NPSH and ascorbic acid levels decreased in the liver. However, dietary (PhSe)2 reduced the herbicide-induced effects on the studied parameters. In conclusion, (PhSe)2 has beneficial properties based on its ability to attenuate toxicity induced by quinclorac by regulating energy metabolism and oxidative stress-related parameters.


Assuntos
Derivados de Benzeno/administração & dosagem , Peixes-Gato/metabolismo , Herbicidas/toxicidade , Compostos Organosselênicos/administração & dosagem , Substâncias Protetoras/administração & dosagem , Quinolinas/toxicidade , Animais , Ácido Ascórbico/metabolismo , Catalase/genética , Catalase/metabolismo , Dieta , Suplementos Nutricionais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Estresse Oxidativo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA