Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
1.
J Clin Med ; 13(6)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38541826

RESUMO

Background: Rejection continues to be the main cause of renal graft loss. Currently, the gold standard for diagnosis is an allograft biopsy; however, because it is time-consuming, costly, and invasive, the pursuit of novel biomarkers has gained interest. Variation in the expressions of miRNAs is currently considered a probable biomarker for the diagnosis of acute rejection. This study aimed to determine whether miR-150-5p in serum is related to microvascular damage in patients with acute antibody-mediated rejection (ABMR). Methods: A total of 27 patients who underwent renal transplantation (RT) with and without ABMR were included in the study. We performed the quantification of hsa-miR-150-5p, hsa-miR-155, hsa-miR-21, hsa-miR-126, and hsa-miR-1 in plasma by RT-qPCR. The expressions between the groups and their correlations with the histological characteristics of the patients with ABMR were also investigated. Results: miR-150-5p significantly increased in the plasma of patients with rejection (p < 0.05), and the changes in miR-150-5p were directly correlated with microvascular inflammation in the allograft biopsies. Clinical utility was determined by ROC analysis with an area under the curve of 0.873. Conclusions: Our results show that the patients with RT with ABMR exhibited increased expression of miR-150-5p compared to patients without rejection, which could have clinical consequences, as well as probable utility in the diagnosis of ABMR, and bioinformatics may help in unraveling the molecular mechanisms underlying ABMR conditions.

2.
Noncoding RNA Res ; 9(2): 594-601, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532797

RESUMO

Keratinocytes, the principal epidermal cells, play a vital role in maintaining the structural integrity and functionality of the skin. Beyond their protective role, keratinocytes are key contributors to the process of wound healing, as they migrate to injury sites, proliferate, and generate new layers of epidermis, facilitating tissue repair and remodeling. Moreover, keratinocytes actively participate in the skin's immune responses, expressing pattern recognition receptors (PRRs) to detect microbial components and interact with immune cells to influence adaptive immunity. Keratinocytes express a diverse repertoire of signaling pathways, transcription factors, and epigenetic regulators to regulate their growth, differentiation, and response to environmental cues. Among these regulatory elements, long non-coding RNAs (lncRNAs) have emerged as essential players in keratinocyte biology. LncRNAs, including MALAT1, play diverse roles in gene regulation and cellular processes, influencing keratinocyte proliferation, differentiation, migration, and response to environmental stimuli. Dysregulation of specific lncRNAs such as MALAT1 can disrupt keratinocyte homeostasis, leading to impaired differentiation, compromised barrier integrity, and contributing to the pathogenesis of various skin disorders. Understanding the intricate interplay between lncRNAs and keratinocytes offers promising insights into the molecular underpinnings of skin health and disease, with potential implications for targeted therapies and advancements in dermatological research. Hence, our objective is to provide a comprehensive summary of the available knowledge concerning keratinocytes and their intricate relationship with MALAT1.

3.
Nutrients ; 16(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38337625

RESUMO

Asthma is one of the most common chronic non-communicable diseases worldwide, characterized by variable airflow limitation secondary to airway narrowing, airway wall thickening, and increased mucus resulting from chronic inflammation and airway remodeling. Current epidemiological studies reported that hypovitaminosis D is frequent in patients with asthma and is associated with worsening the disease and that supplementation with vitamin D3 improves asthma symptoms. However, despite several advances in the field, the molecular mechanisms of asthma have yet to be comprehensively understood. MicroRNAs play an important role in controlling several biological processes and their deregulation is implicated in diverse diseases, including asthma. Evidence supports that the dysregulation of miR-21, miR-27b, miR-145, miR-146a, and miR-155 leads to disbalance of Th1/Th2 cells, inflammation, and airway remodeling, resulting in exacerbation of asthma. This review addresses how these molecular mechanisms explain the development of asthma and its exacerbation and how vitamin D3 may modulate these microRNAs to improve asthma symptoms.


Assuntos
Asma , MicroRNAs , Humanos , Colecalciferol/farmacologia , Colecalciferol/uso terapêutico , MicroRNAs/genética , Remodelação das Vias Aéreas , Asma/tratamento farmacológico , Asma/genética , Asma/complicações , Pulmão , Inflamação/complicações , Suplementos Nutricionais
4.
Pharmaceuticals (Basel) ; 17(2)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38399437

RESUMO

Previous studies provided evidence of the benefits of omega-3 polyunsaturated fatty acids (ω-3 PUFA) on the cardiovascular system and inflammation. However, its possible effect on skeletal muscle is unknown. This study aimed to evaluate whether ω-3 PUFA reverses the dysregulation of metabolic modulators in the skeletal muscle of rats on a high-fat obesogenic diet. For this purpose, an animal model was developed using male Wistar rats with a high-fat diet (HFD) and subsequently supplemented with ω-3 PUFA. Insulin resistance was assessed, and gene and protein expression of metabolism modulators in skeletal muscle was also calculated using PCR-RT and Western blot. Our results confirmed that in HFD rats, zoometric parameters and insulin resistance were increased compared to SD rats. Furthermore, we demonstrate reduced gene and protein expression of peroxisome proliferator-activated receptors (PPARs) and insulin signaling molecules. After ω-3 PUFA supplementation, we observed that glucose (24.34%), triglycerides (35.78%), and HOMA-IR (40.10%) were reduced, and QUICKI (12.16%) increased compared to HFD rats. Furthermore, in skeletal muscle, we detected increased gene and protein expression of PPAR-α, PPAR-γ, insulin receptor (INSR), insulin receptor substrate 1 (ISR-1), phosphatidylinositol-3-kinase (PI3K), and glucose transporter 4 (GLUT-4). These findings suggest that ω-3 PUFAs decrease insulin resistance of obese skeletal muscle.

5.
PeerJ ; 11: e16132, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37786577

RESUMO

Background: Recent studies have suggested that metabolic syndrome (MS) encompasses a group of risk factors for developing chronic kidney disease (CKD). This work aimed to evaluate the antioxidant and anti-inflammatory effects of allicin in the kidney from an experimental model of MS. Methods: Male Wistar rats (220-250 g) were used, and three experimental groups (n = 6) were formed: control (C), metabolic syndrome (MS), and MS treated with allicin (16 mg/Kg/day, gastric gavage) (MS+A). MS was considered when an increase of 20% in at least three parameters (body weight, systolic blood pressure (SBP), fasting blood glucose (FBG), or dyslipidemia) was observed compared to the C group. After the MS diagnosis, allicin was administered for 30 days. Results: Before the treatment with allicin, the MS group showed more significant body weight gain, increased SBP, and FBG, glucose intolerance, and dyslipidemia. In addition, increased markers of kidney damage in urine and blood. Moreover, the MS increased oxidative stress and inflammation in the kidney compared to group C. The allicin treatment prevented further weight gain, reduced SBP, FBG, glucose intolerance, and dyslipidemia. Also, markers of kidney damage in urine and blood were decreased. Further, the oxidative stress and inflammation were decreased in the renal cortex of the MS+A compared to the MS group. Conclusion: Allicin exerts its beneficial effects on the metabolic syndrome by considerably reducing systemic and renal inflammation as well as the oxidative stress. These effects were mediated through the Nrf2 pathway. The results suggest allicin may be a therapeutic alternative for treating kidney injury induced by the metabolic syndrome risk factors.


Assuntos
Intolerância à Glucose , Síndrome Metabólica , Insuficiência Renal Crônica , Ratos , Animais , Masculino , Antioxidantes/farmacologia , Síndrome Metabólica/tratamento farmacológico , Intolerância à Glucose/tratamento farmacológico , Ratos Wistar , Rim , Insuficiência Renal Crônica/tratamento farmacológico , Peso Corporal , Modelos Teóricos , Inflamação/tratamento farmacológico , Anti-Inflamatórios/farmacologia
6.
Lupus Sci Med ; 10(2)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37880158

RESUMO

OBJECTIVE: Rhupus is a rare disease that shares characteristics of systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA). While several studies have explored the clinical and immunological profiles of patients with rhupus, the underlying cause of the disease remains unknown due to its complex pathogenesis. The objective of this study was to investigate the role of tumour necrosis factor (TNF) in the production of inflammatory molecules by peripheral blood mononuclear cells (PBMCs) from patients with rhupus. METHODS: The study involved five healthy controls, seven patients with rhupus and seven patients with SLE. PBMCs were obtained from each participant and stimulated with recombinant human TNF for 24 hours. The levels of various molecules secreted by the cells, such as cytokines and chemokines, were measured using immunobead-based assays on xMAP technology. RESULTS: The production levels of some molecules were higher in TNF-stimulated PBMCs from patients with rhupus and SLE than in unstimulated cells. In addition, the levels of certain molecules, including gp130/sIL-6Rb, a proliferation-inducing ligand (APRIL), interferon-ß, matrix metalloproteinase-3 and interleukin (IL)-12, were higher in PBMCs from patients with rhupus even without TNF stimulation. Similarly, the levels of gp130/sIL-6Rb and APRIL were higher in TNF-stimulated PBMCs from patients with rhupus than in healthy controls. These results were further validated against patients with RA using enzyme-linked immunosorbent assay. CONCLUSIONS: These findings suggest that the spontaneous production of molecules by cells from patients with rhupus may contribute to the development of the disease, and that TNF may play a role in this process by regulating the secretion of gp130/sIL-6Rb and APRIL.


Assuntos
Artrite Reumatoide , Lúpus Eritematoso Sistêmico , Humanos , Receptor gp130 de Citocina , Leucócitos Mononucleares , Membro 13 da Superfamília de Ligantes de Fatores de Necrose Tumoral , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/farmacologia
7.
Microorganisms ; 11(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37764186

RESUMO

COVID-19, a disease caused by the SARS-CoV-2 virus, poses significant threats to the respiratory system and other vital organs. Long non-coding RNAs have emerged as influential epigenetic regulators and promising biomarkers in respiratory ailments. The objective of this study was to identify candidate lncRNAs in SARS-CoV-2-positive individuals compared to SARS-CoV-2-negative individuals and investigate their potential association with ARDS-CoV-2 (acute respiratory distress syndrome). Employing qRT-PCR, we meticulously examined the expression profiles of a panel comprising 84 inflammation-related lncRNAs in individuals presenting upper respiratory infection symptoms, categorizing them into those testing negative or positive for SARS-CoV-2. Notably, first-phase PSD individuals exhibited significantly elevated levels of AC000120.7 and SENP3-EIF4A1. In addition, we measured the expression of two lncRNAs, AC000120.7 and SENP3-EIF4A1, in patients with ARDS unrelated to SARS-CoV-2 (n = 5) and patients with ARDS induced by SARS-CoV-2 (ARDS-CoV-2, n = 10), and interestingly, expression was also higher among patients with ARDS. Intriguingly, our interaction pathway analysis unveiled potential interactions between lncRNA AC000120.7, various microRNAs, and genes associated with inflammation. This study found higher expression levels of lncRNAs AC000120.7 and SENP3-EIF4A1 in the context of infection-positive COVID-19, particularly within the complex landscape of ARDS.

8.
Biomedicines ; 11(9)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37760864

RESUMO

Prompt diagnosis of ST-segment elevation myocardial infarction (STEMI) is essential for initiating timely treatment. MicroRNAs have recently emerged as biomarkers in cardiovascular diseases. This study aimed to evaluate the discriminatory capacity of serum microRNAs in identifying an ischemic origin in patients presenting with chest discomfort to the Emergency Department. The study included 98 participants (78 with STEMI and 20 with nonischemic chest discomfort). Significant differences in the expression levels of miR-133b, miR-126, and miR-155 (but not miR-1, miR-208, and miR-208b) were observed between groups. miR-133b and miR-155 exhibited 97% and 93% sensitivity in identifying STEMI patients, respectively. miR-126 demonstrated a specificity of 90% in identifying STEMI patients. No significant associations were found between microRNAs and occurrence of major adverse cardiovascular events (MACE). However, patients with MACE had higher levels of interleukin (IL)-15, IL-21, IFN-γ-induced protein-10, and N-terminal pro B-type natriuretic peptide compared to non-MACE patients. Overall, there were significant associations among the expression levels of microRNAs. However, microRNAs did not demonstrate associations with either inflammatory markers or cardiovascular risk scores. This study highlights the potential of microRNAs, particularly miR-133b and miR-126, as diagnostic biomarkers for distinguishing patients with STEMI from those presenting with nonischemic chest discomfort to the Emergency Department.

9.
Microorganisms ; 11(8)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37630479

RESUMO

BACKGROUND: Coronavirus disease 2019 (COVID-19) is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Clinical manifestations of COVID-19 range from mild flu-like symptoms to severe respiratory failure. Nowadays, extracellular matrix metalloproteinase inducer (EMMPRIN), also known as cluster of differentiation 147 (CD147) or BASIGIN, has been studied as enabling viral entry and replication within host cells. However, the impact of the CD147 rs8259T>A single nucleotide variant (SNV) on SARS-CoV-2 susceptibility remains poorly investigated. OBJECTIVE: To investigate the impact of rs8259T>A on the CD147 gene in individuals from Mexico with COVID-19 disease. METHODS: We genotyped the CD147 rs8359T>A SNV in 195 patients with COVID-19 and 185 healthy controls from Mexico. In addition, we also measured the expression levels of CD147 and TNF mRNA and miR-492 from whole blood of patients with COVID-19 through RT-q-PCR. RESULTS: We observed a significant association between the CD147 rs8259T>A SNV and susceptibility to COVID-19: T vs. A; OR 1.36, 95% CI 1.02-1.81; p = 0.037; and TT vs. AA; OR 1.77, 95% CI 1.01-3.09; p = 0.046. On the other hand, we did not find differences in CD147, TNF or miR-492 expression levels when considering the genotypes of the CD147 rs8259T>A SNV. CONCLUSIONS: Our results suggest that the CD147 rs8259T>A variant is a risk factor for COVID-19.

10.
Nutrients ; 15(13)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37447169

RESUMO

The human skin is a crucial organ that protects the organism from the outer environment. Skin integrity and health depend on both extrinsic and intrinsic factors. Intrinsic factors such as aging and genetic background contribute to weakened skin and disease susceptibility. Meanwhile, extrinsic factors including UV radiation, pollution, smoking, humidity, and poor diet also affect skin health and disease. On the other hand, healthy dietary patterns such as plant-based diets have gained popularity as a complementary therapy for skin health. A plant-based diet is defined as all diets based on plant foods, including an abundance of vegetables, fruits, beans, lentils, legumes, nuts, seeds, fungi, and whole grains, with limited or no animal products or processed foods. However, some authors also exclude or limit processed foods in the definition. Recent research has shown that these diets have beneficial effects on inflammatory skin diseases. This review explored the beneficial effects of plant-based diets on inflammatory skin diseases and plant-based functional foods on healthy skin. In conclusion, plant-based diets and plant-based functional foods may have beneficial effects on skin health through the gut microbiome.


Assuntos
Dermatite , Dieta Vegetariana , Humanos , Dieta , Verduras , Plantas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA