Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Plant Dis ; 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344942

RESUMO

Agave attenuata is a Mexican wild plant originally from highlands in the central and occidental mountains of Mexico. This species, known as "swan´s neck agave", is used only as an ornamental plant in public and private gardens. No virus had previously been reported from A. attenuata before this study. In a survey conducted in a commercial greenhouse in Cuautla, Morelos, in 2018, several plants were observed with symptoms of green mosaic and streaks, consistent with a putative viral infection. Sap inoculation from symptomatic A. attenuata plants to herbaceous indicator plants (Nicotiana benthamiana and N. tabacum) failed to produce symptoms in the mechanically inoculated plants. ELISA specific test to CMV, TEV, AMV, TMV and Potyvirus Group (Agdia, Inc.), was positive only for the last one (Chen and Chang, 1998). To determine the identity of the potyvirus involved, total nucleic acid extracts from 100 mg of symptomatic leaves (Trizol reagent; Gibco BRL Life Technologies, England) were used as template in RT-PCR with genus-specific potyvirus primers POT1-POT2, which targeted the variable 5´ terminal half of the coat protein gene of potyviruses (Colinet et al. 1998). The expected 900 bp amplicon was consistently detected in 10 symptomatic A. attenuata plants whereas no PCR products were obtained from 15 asymptomatic A. attenuata plants collected from the "Agaves de México" section at the 'Botanic Garden' of the Instituto de Biología de la UNAM, México. The amplicons were sequenced by the Sanger´s method and the obtained nucleotide (nt) sequences (Acc. No KY190217.1; OP964597-598) and their derived amino acid (aa) sequences were 94.68% to 95.80% similar to an isolate of Tuberose mild mosaic virus (TuMMV; Potyvirus; (Acc. No ON116187.1) characterized from Agave amica in India (Raj et al. 2009). Interestingly, A. amica (formerly Poliantes tuberose) is also a wild Mexican plant that is geographically distributed in the central and south regions of Mexico and is currently being commercially cultivated as an ornamental plant. Plants of A. amica (n=10) showing yellow mild streak were collected from commercial greenhouse and tested positive for TuMMV by RT-PCR and Sanger sequencing (No Acc. OP964599-601 levels) described above. The derived TuMMV sequences from A. attenuata and A. amica were 99-100% similar to each other at the nt/aa level. To exclude the involvement of additional viral agents in the disease, high-throughput sequencing analysis was performed separately for each species of Agave on total RNA extracts from a composite sample of symptomatic leaf tissues using Illumina´s Next Seq 500 platform. Analysis of the obtained 13,260,700 reads (each 75 nt) by the Trinity software, with a total number of sequences of 22,793, resulted in the identification of a single viral contig of 9500 nt for A. attenuata (Acc. No OP964595). Similarly, for A. amica, 27,262,248 reads were obtained, with a total number of sequences of 23,269, resulting in the identification of a single viral contig of 8500 nt (ACC. No OP964602). These contigs showed an identity percentage of 96%/88% and 98%/96% for nucleotides and amino acids, respectively, compared to an isolate of TuMMV from India (Acc. OM293939). Mexico is a center of origin for numerous species of genus Agave which have high economic, social, and ecological impact. TuMMV could be a threat to these plants and potentially to other unknown susceptible crops. To our knowledge, this is the first report of TuMMV in A. attenuata and A. amica in Mexico. REFERENCE Chen, C. C., and Chang, C. A. 1998. Characterization of a potyvirus causing mild mosaic on tuberose. Plant Dis. 82:45-49. Colinet, D., Nguyen, M., Kummert, J., Lepoivre, P., and Xia, F. Z. 1998. Differentiation among potyviruses infecting sweet potato based on genus- and virus-specific reverse transcription polymerase chain reaction. Plant Dis. 82:223-229. Raj, S.K., Snehi, S.K., Kumar, S., Ram, T. and Goel, A.K. 2009. First report of Tuberose mild mosaic potyvirus from tuberose (Polianthes tuberosa L.) in India. Australasian Plant Dis. Notes 4, 93-95.

2.
Viruses ; 13(12)2021 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-34960766

RESUMO

Previous results using a movement defective alfalfa mosaic virus (AMV) vector revealed that citrus leprosis virus C (CiLV-C) movement protein (MP) generates a more efficient local movement, but not more systemic transport, than citrus leprosis virus C2 (CiLV-C2) MP, MPs belonging to two important viruses for the citrus industry. Here, competition experiment assays in transgenic tobacco plants (P12) between transcripts of AMV constructs expressing the cilevirus MPs, followed by several biological passages, showed the prevalence of the AMV construct carrying the CiLV-C2 MP. The analysis of AMV RNA 3 progeny recovered from P12 plant at the second viral passage revealed the presence of a mix of progeny encompassing the CiLV-C2 MP wild type (MPWT) and two variants carrying serines instead phenylalanines at positions 72 (MPS72F) or 259 (MPS259F), respectively. We evaluated the effects of each modified residue in virus replication, and cell-to-cell and long-distance movements. Results indicated that phenylalanine at position 259 favors viral cell-to-cell transport with an improvement in viral fitness, but has no effect on viral replication, whereas mutation at position 72 (MPS72F) has a penalty in the viral fitness. Our findings indicate that the prevalence of a viral population may be correlated with its greater efficiency in cell-to-cell and systemic movements.


Assuntos
Citrus/virologia , Mutação , Proteínas do Movimento Viral em Plantas/genética , Vírus de Plantas/fisiologia , Vírus do Mosaico da Alfafa/genética , Movimento , Plantas Geneticamente Modificadas , Replicação Viral
3.
Microorganisms ; 9(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671330

RESUMO

Although citrus leprosis disease has been known for more than a hundred years, one of its causal agents, citrus leprosis virus C2 (CiLV-C2), is poorly characterized. This study described the association of CiLV-C2 movement protein (MP) and capsid protein (p29) with biological membranes. Our findings obtained by computer predictions, chemical treatments after membrane fractionation, and biomolecular fluorescence complementation assays revealed that p29 is peripherally associated, while the MP is integrally bound to the cell membranes. Topological analyses revealed that both the p29 and MP expose their N- and C-termini to the cell cytoplasmic compartment. The implications of these results in the intracellular movement of the virus were discussed.

4.
Sci Rep ; 11(1): 2943, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33536554

RESUMO

Citrus leprosis (CL) is a severe disease that affects citrus orchards mainly in Latin America. It is caused by Brevipalpus-transmitted viruses from genera Cilevirus and Dichorhavirus. Currently, no reports have explored the movement machinery for the cilevirus. Here, we have performed a detailed functional study of the p32 movement protein (MP) of two cileviruses. Citrus leprosis-associated viruses are not able to move systemically in neither their natural nor experimental host plants. However, here we show that cilevirus MPs are able to allow the cell-to-cell and long-distance transport of movement-defective alfalfa mosaic virus (AMV). Several features related with the viral transport were explored, including: (i) the ability of cilevirus MPs to facilitate virus movement on a nucleocapsid assembly independent-manner; (ii) the generation of tubular structures from transient expression in protoplast; (iii) the capability of the N- and C- terminus of MP to interact with the cognate capsid protein (p29) and; (iv) the role of the C-terminus of p32 in the cell-to-cell and long-distance transport, tubule formation and the MP-plasmodesmata co-localization. The MP was able to direct the p29 to the plasmodesmata, whereby the C-terminus of MP is independently responsible to recruit the p29 to the cell periphery. Furthermore, we report that MP possess the capacity to enter the nucleolus and to bind to a major nucleolar protein, the fibrillarin. Based on our findings, we provide a model for the role of the p32 in the intra- and intercellular viral spread.


Assuntos
Proteínas do Capsídeo/metabolismo , Citrus/virologia , Doenças das Plantas/virologia , Proteínas do Movimento Viral em Plantas/metabolismo , Vírus de Plantas/metabolismo , Animais , Ácaros/virologia , Nucleocapsídeo/metabolismo , Vírus de Plantas/patogenicidade , Protoplastos/metabolismo , Protoplastos/virologia
5.
Front Microbiol ; 11: 571807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33250868

RESUMO

Brevipalpus-transmitted viruses (BTVs) belong to the genera Dichorhavirus and Cilevirus and are the main causal agents of the citrus leprosis (CL) disease. In this report, we explored aspects related to the movement mechanism mediated by dichorhaviruses movement proteins (MPs) and the homologous and heterologous interactions among viral proteins related to the movement of citrus leprosis-associated viruses. The membrane-spanning property and topology analysis of the nucleocapsid (N) and MP proteins from two dichorhaviruses revealed that the MPs are proteins tightly associated with the cell membrane, exposing their N- and C-termini to the cytoplasm and the inner part of the nucleus, whereas the N proteins are not membrane-associated. Subcellular localization analysis revealed the presence of dichorhavirus MPs at the cell surface and in the nucleus, while the phosphoproteins (P) were located exclusively in the nucleus and the N proteins in both the cytoplasm and the nucleus. Co-expression analysis with the MP, P, and N proteins showed an interaction network formed between them. We highlight the MP capability to partially redistribute the previously reported N-P core complex, redirecting a portion of the N from the nucleus to the plasmodesmata at the cell periphery, which indicates not only that the MP might guide the intracellular trafficking of the viral infective complex but also that the N protein may be associated with the cell-to-cell movement mechanism of dichorhaviruses. The movement functionality of these MPs was analyzed by using three movement-defective infectious systems. Also, the MP capacity to generate tubular structures on the protoplast surface by ectopic expression was analyzed. Finally, we evaluated the in vivo protein-protein interaction networks between the dichorhavirus MP and/or N proteins with the heterologous cilevirus movement components, which suggest a broad spectrum of interactions, highlighting those among capsid proteins (CP), MPs, and Ns from citrus leprosis-associated viruses. These data may aid in understanding the mixed infection process naturally observed in the field caused by distinct BTVs.

6.
Front Microbiol ; 11: 1231, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655520

RESUMO

Citrus leprosis virus C (CiLV-C) belongs to the genus Cilevirus, family Kitaviridae, and is considered the most devastating virus infecting citrus in Brazil, being the main viral pathogen responsible for citrus leprosis (CL), a severe disease that affects citrus orchards in Latin America. Here, proteins encoded by CiLV-C genomic RNA 1 and 2 were screened for potential RNA silencing suppressor (RSS) activity by five methods. Using the GFP-based reporter agroinfiltration assay, we have not found potential local suppressor activity for the five CiLV-C encoded proteins. However, when RSS activity was evaluated using the alfalfa mosaic virus (AMV) system, we found that the p29, p15, and p61 CiLV-C proteins triggered necrosis response and increased the AMV RNA 3 accumulation, suggesting a suppressive functionality. From the analysis of small interfering RNAs (siRNAs) accumulation, we observed that the ectopic expression of the p29, p15, and p61 reduced significantly the accumulation of GFP derived siRNAs. The use of the RSS defective turnip crinkle virus (TCV) system revealed that only the trans-expression of the p15 protein restored the cell-to-cell viral movement. Finally, the potato virus X (PVX) system revealed that the expression of p29, p15, and p61 increased the PVX RNA accumulation; in addition, the p29 and p15 enhanced the pathogenicity of PVX resulting in the death of tobacco plants. Furthermore, PVX-p61 infection resulted in a hypersensitive response (HR), suggesting that p61 could also activate a plant defense response mechanism. This is the first report describing the RSS activity for CiLV-C proteins and, moreover, for a member of the family Kitaviridae.

7.
Arch Virol ; 165(3): 781-784, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31980940

RESUMO

In this work, we describe the complete sequence and genome organization of a novel tobamovirus detected in a prickly pear plant (Opuntia sp.) by high-throughput sequencing, tentatively named "opuntia virus 2". The full genome of opuntia virus 2 is 6,453 nucleotides in length and contains four open reading frames (ORFs) coding for the two subunits of the RNA polymerase, the movement protein, and the coat protein, respectively. Phylogenetic analysis using the complete nucleotide sequence revealed that the virus belongs to the genus Tobamovirus (family Virgaviridae), showing the highest nucleotide sequence identity (49.8%) with cactus mild mottle virus (CMMoV), being indicating that it belongs in the Cactaceae subgroup of tobamoviruses.


Assuntos
Opuntia/virologia , Doenças das Plantas/virologia , Tobamovirus/genética , Tobamovirus/isolamento & purificação , Filogenia
8.
Arch Virol ; 164(10): 2617-2620, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31346768

RESUMO

The complete genome sequence of a trichovirus was obtained from peach samples collected from Mexico and found to be 7985 nucleotides long, excluding the poly(A) tail. Phylogenetic analysis using the complete nucleotide sequence revealed that the virus is a member of the genus Trichovirus and is closely related to peach mosaic virus (PcMV) and cherry mottle leaf virus (CMLV). The highest nucleotide sequence identity was 70% to both PcMV and CMLV, indicating that this virus, which we have tentatively named "peach virus M" (PeVM) should be considered a member of a new trichovirus species. We determined, for the first time, the initiation sites of the subgenomic RNAs (sgRNA) of a trichovirus. The sgRNAs for the movement and coat proteins started with the sequence 'GAA', while the smallest one, coding for the nucleotide-binding protein, started with the nucleotides 'GU'. In all cases, the sgRNAs leader ranged between 113 and 121 nt in length.


Assuntos
Flexiviridae/genética , Flexiviridae/isolamento & purificação , Filogenia , Prunus persica/virologia , Flexiviridae/classificação , México , RNA Viral/genética , Análise de Sequência de DNA , Homologia de Sequência do Ácido Nucleico , Proteínas Virais/genética
9.
J Gen Virol ; 94(Pt 3): 677-681, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23136366

RESUMO

We previously showed that the movement protein (MP) gene of Alfalfa mosaic virus (AMV) is functionally exchangeable for the cell-to-cell transport of the corresponding genes of Tobacco mosaic virus (TMV), Brome mosaic virus, Prunus necrotic ringspot virus, Cucumber mosaic virus and Cowpea mosaic virus. We have analysed the capacity of the heterologous MPs to systemically transport the corresponding chimeric AMV genome. All MPs were competent in systemic transport but required the fusion at their C terminus of the coat protein-interacting C-terminal 44 aa (A44) of the AMV MP. Except for the TMV MP, the presence of the hybrid virus in upper leaves correlated with the capacity to move locally. These results suggest that all the MPs assigned to the 30K superfamily should be exchangeable not only for local virus movement but also for systemic transport when the A44 fragment is present.


Assuntos
Vírus do Mosaico da Alfafa/fisiologia , Regulação Viral da Expressão Gênica/fisiologia , Proteínas do Movimento Viral em Plantas/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas de Fluorescência Verde , Plantas Geneticamente Modificadas , Transporte Proteico , RNA Viral/genética , Proteínas Recombinantes , Nicotiana/genética , Replicação Viral
10.
Arch Virol ; 153(5): 909-19, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18365129

RESUMO

Prunus necrotic ringspot virus (PNRSV) is distributed worldwide, but no molecular data have been previously reported from South American isolates. The nucleotide sequences corresponding to the movement (MP) and coat (CP) proteins of 23 isolates of PNRSV from Chile, Brazil, and Uruguay, and from different Prunus species, have been obtained. Phylogenetic analysis performed with full-length MP and CP sequences from all the PNRSV isolates confirmed the clustering of the isolates into the previously reported PV32-I, PV96-II and PE5-III phylogroups. No association was found between specific sequences and host, geographic origin or symptomatology. Comparative analysis showed that both MP and CP have phylogroup-specific amino acids and all of the motifs previously characterized for both proteins. The study of the distribution of synonymous and nonsynonymous changes along both open reading frames revealed that most amino acid sites are under the effect of negative purifying selection.


Assuntos
Proteínas do Capsídeo/genética , Ilarvirus/genética , Ilarvirus/isolamento & purificação , Proteínas do Movimento Viral em Plantas/genética , Prunus/virologia , Sequência de Aminoácidos , Sequência de Bases , Clonagem Molecular , Sequência Conservada , Primers do DNA/genética , Genes Virais , Variação Genética , Ilarvirus/classificação , Dados de Sequência Molecular , Filogenia , RNA Viral/genética , RNA Viral/isolamento & purificação , Seleção Genética , Homologia de Sequência de Aminoácidos , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA