Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 234(5): 1664-1677, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35201608

RESUMO

Tree size shapes forest carbon dynamics and determines how trees interact with their environment, including a changing climate. Here, we conduct the first global analysis of among-site differences in how aboveground biomass stocks and fluxes are distributed with tree size. We analyzed repeat tree censuses from 25 large-scale (4-52 ha) forest plots spanning a broad climatic range over five continents to characterize how aboveground biomass, woody productivity, and woody mortality vary with tree diameter. We examined how the median, dispersion, and skewness of these size-related distributions vary with mean annual temperature and precipitation. In warmer forests, aboveground biomass, woody productivity, and woody mortality were more broadly distributed with respect to tree size. In warmer and wetter forests, aboveground biomass and woody productivity were more right skewed, with a long tail towards large trees. Small trees (1-10 cm diameter) contributed more to productivity and mortality than to biomass, highlighting the importance of including these trees in analyses of forest dynamics. Our findings provide an improved characterization of climate-driven forest differences in the size structure of aboveground biomass and dynamics of that biomass, as well as refined benchmarks for capturing climate influences in vegetation demographic models.


Assuntos
Carbono , Clima Tropical , Biomassa , Temperatura , Madeira
2.
New Phytol ; 230(2): 485-496, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33449384

RESUMO

The effects of climate change on tropical forests will depend on how diverse tropical tree species respond to drought. Current distributions of evergreen and deciduous tree species across local and regional moisture gradients reflect their ability to tolerate drought stress, and might be explained by functional traits. We measured leaf water potential at turgor loss (i.e. 'wilting point'; πtlp ), wood density (WD) and leaf mass per area (LMA) on 50 of the most abundant tree species in central Panama. We then tested their ability to explain distributions of evergreen and deciduous species within a 50 ha plot on Barro Colorado Island and across a 70 km rainfall gradient spanning the Isthmus of Panama. Among evergreen trees, species with lower πtlp were associated with drier habitats, with πtlp explaining 28% and 32% of habitat association on local and regional scales, respectively, greatly exceeding the predictive power of WD and LMA. In contrast, πtlp did not predict habitat associations among deciduous species. Across spatial scales, πtlp is a useful indicator of habitat preference for tropical tree species that retain their leaves during periods of water stress, and holds the potential to predict vegetation responses to climate change.


Assuntos
Folhas de Planta , Árvores , Colorado , Secas , Panamá , Clima Tropical , Água
3.
Biol Lett ; 13(1)2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28077687

RESUMO

Pan-tropically, liana density increases with decreasing rainfall and increasing seasonality. This pattern has led to the hypothesis that lianas display a growth advantage over trees under dry conditions. However, the physiological mechanisms underpinning this hypothesis remain elusive. A key trait influencing leaf and plant drought tolerance is the leaf water potential at turgor loss point (πtlp). πtlp adjusts under drier conditions and this contributes to improved leaf drought tolerance. For co-occurring Amazonian tree (n = 247) and liana (n = 57) individuals measured during the dry and the wet seasons, lianas showed a stronger osmotic adjustment than trees. Liana leaves were less drought-tolerant than trees in the wet season, but reached similar drought tolerances during the dry season. Stronger osmotic adjustment in lianas would contribute to turgor maintenance, a critical prerequisite for carbon uptake and growth, and to the success of lianas relative to trees in growth under drier conditions.


Assuntos
Secas , Pressão Osmótica , Folhas de Planta/fisiologia , Árvores/fisiologia , Água/fisiologia , Adaptação Fisiológica , Guiana Francesa , Estações do Ano , Clima Tropical
4.
New Phytol ; 204(1): 92-104, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25077933

RESUMO

The stomatal behavior of ferns provides an excellent system for disentangling responses to different environmental signals, which balance carbon gain against water loss. Here, we measured responses of stomatal conductance (gs ) to irradiance, CO2 , and vapor pressure deficit (VPD) for 13 phylogenetically diverse species native to open and shaded habitats, grown under high- and low-irradiance treatments. We tested two main hypotheses: that plants adapted and grown in high-irradiance environments would have greater responsiveness to all stimuli given higher flux rates; and that species' responsiveness to different factors would be correlated because of the relative simplicity of fern stomatal control. We found that species with higher light-saturated gs had larger responses, and that plants grown under high irradiance were more responsive to all stimuli. Open habitat species showed greater responsiveness to irradiance and CO2 , but lower responsiveness to VPD; a case of plasticity and adaptation tending in different directions. Responses of gs to irradiance and VPD were positively correlated across species, but CO2 responses were independent and highly variable. The novel finding of correlations among stomatal responses to different stimuli suggests coordination of hydraulic and photosynthetic signaling networks modulating fern stomatal responses, which show distinct optimization at growth and evolutionary time-scales.


Assuntos
Gleiquênias/fisiologia , Estômatos de Plantas/fisiologia , Adaptação Fisiológica , Dióxido de Carbono , Costa Rica , Ecossistema , Gleiquênias/crescimento & desenvolvimento , Luz , Pressão de Vapor , Água
5.
New Phytol ; 191(2): 480-495, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21477008

RESUMO

Plant hydraulic architecture has been studied extensively, yet we know little about how hydraulic properties relate to species' life history strategies, such as drought and shade tolerance. The prevailing theories seem contradictory. We measured the sapwood (K(s) ) and leaf (K(l) ) hydraulic conductivities of 40 coexisting tree species in a Bolivian dry forest, and examined associations with functional stem and leaf traits and indices of species' drought (dry-season leaf water potential) and shade (juvenile crown exposure) tolerance. Hydraulic properties varied across species and between life-history groups (pioneers vs shade-tolerant, and deciduous vs evergreen species). In addition to the expected negative correlation of K(l) with drought tolerance, we found a strong, negative correlation between K(l) and species' shade tolerance. Across species, K(s) and K(l) were negatively correlated with wood density and positively with maximum vessel length. Consequently, drought and shade tolerance scaled similarly with hydraulic properties, wood density and leaf dry matter content. We found that deciduous species also had traits conferring efficient water transport relative to evergreen species. Hydraulic properties varied across species, corresponding to the classical trade-off between hydraulic efficiency and safety, which for these dry forest trees resulted in coordinated drought and shade tolerance across species rather than the frequently hypothesized trade-off.


Assuntos
Secas , Transpiração Vegetal , Feixe Vascular de Plantas/fisiologia , Árvores/fisiologia , Clima Tropical , Adaptação Fisiológica , Bolívia , Ecossistema , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Estações do Ano , Estresse Fisiológico , Luz Solar , Água , Madeira
6.
Plant Cell Environ ; 34(1): 137-48, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20946587

RESUMO

Cavitation resistance is a critical determinant of drought tolerance in tropical tree species, but little is known of its association with life history strategies, particularly for seasonal dry forests, a system critically driven by variation in water availability. We analysed vulnerability curves for saplings of 13 tropical dry forest tree species differing in life history and leaf phenology. We examined how vulnerability to cavitation (P50) related to dry season leaf water potentials and stem and leaf traits. P50-values ranged from -0.8 to -6.2 MPa, with pioneers on average 38% more vulnerable to cavitation than shade-tolerants. Vulnerability to cavitation was related to structural traits conferring tissue stress vulnerability, being negatively correlated with wood density, and surprisingly maximum vessel length. Vulnerability to cavitation was negatively related to the Huber-value and leaf dry matter content, and positively with leaf size. It was not related to SLA. We found a strong trade-off between cavitation resistance and hydraulic efficiency. Most species in the field were operating at leaf water potentials well above their P50, but pioneers and deciduous species had smaller hydraulic safety margins than shade-tolerants and evergreens. A trade-off between hydraulic safety and efficiency underlies ecological differentiation across these tropical dry forest tree species.


Assuntos
Aclimatação , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Árvores/fisiologia , Xilema , Bolívia , Secas , Fenótipo , Estações do Ano , Árvores/anatomia & histologia , Árvores/genética , Clima Tropical , Água , Xilema/anatomia & histologia
7.
Ecology ; 87(2): 483-91, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16637372

RESUMO

The hydraulic resistance of the leaf (R1) is a major bottleneck in the whole plant water transport pathway and may thus be linked with the enormous variation in leaf structure and function among tropical rain forest trees. A previous study found that R1 varied by an order of magnitude across 10 tree species of Panamanian tropical lowland rain forest. Here, correlations were tested between R1 and 24 traits relating to leaf venation and mesophyll structure, and to gross leaf form. Across species, R1 was related to both venation architecture and mesophyll structure. R1 was positively related to the theoretical axial resistivity of the midrib, determined from xylem conduit numbers and dimensions, and R1 was negatively related to venation density in nine of 10 species. R1 was also negatively related to both palisade mesophyll thickness and to the ratio of palisade to spongy mesophyll. By contrast, numerous leaf traits were independent of R1, including area, shape, thickness, and density, demonstrating that leaves can be diverse in gross structure without intrinsic trade-offs in hydraulic capacity. Variation in both R1-linked and R1-independent traits related strongly to regeneration irradiance, indicating the potential importance of both types of traits in establishment ecology.


Assuntos
Folhas de Planta/fisiologia , Árvores/fisiologia , Clima Tropical , Panamá
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA