Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Cells ; 12(18)2023 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-37759481

RESUMO

Laurencia seaweed species synthesize a broad range of secondary metabolites, mainly terpenes (e.g., elatol), exhibiting diverse ecological roles, such as defense against fouling and herbivores. Recently, an intricate cellular machinery was described concerning terpenes biosynthetic pathways, storage inside corps en cerise (CC), and regulated exocytosis in these species. But for seaweeds in general, the proteins involved in transmembrane transport of secondary metabolites remain unknown. Assays with Rhodamine-123 and cyclosporine A (CSA) revealed the presence of ABC transporters in CC membrane of Laurencia dendroidea. In vivo incubation assays with CSA resulted in CC morphological changes, reduced intracellular elatol concentrations, and increased biofouling cover on the seaweed surface. Cultivation assays in the presence of a marine pathogenic bacteria induced the expression of ABC proteins belonging to the subfamilies ABCB, ABCD, ABCF, and ABCG. The latter subfamily is known to be associated with the transport of plant terpenes. Our results shed new light on the role of ABC proteins in key mechanisms of the defensive system in seaweeds against fouling and herbivory.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Alga Marinha , Metabolismo Secundário , Ciclosporina , Terpenos
2.
Sci Total Environ ; 807(Pt 2): 150880, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-34634342

RESUMO

In November 2015, the collapse of the Fundão dam (Minas Gerais, Brazil) carried over 40 × 106 m3 of iron ore tailings into the Doce river and caused massive environmental and socioeconomic impacts across the watershed. The downstream mudslide scavenged contaminants deposited in the riverbed, and several potentially toxic elements were further released through reduction and solubilization of Fe oxy-hydroxides under estuarine conditions. A turbidity plume was formed off the river mouth, but the detection of contaminants' dispersion in the ocean remains poorly assessed. This situation is specially concerning because Southwestern Atlantic's largest and richest reefs are located 70-250 km to the north of the Doce river mouth, and the legal dispute over the extent of monitoring, compensation and restoration measures are based either on indirect evidence from modeling or on direct evidence from remote sensing and contaminated organisms. Coral skeletons can incorporate trace elements and are considered good monitors of marine pollution, including inputs from open cut mining. Here, we studied a Montastraea cavernosa (Linnaeus 1767) coral colony collected 220 km northward to the river mouth, using X-rays for assessing growth bands and Laser Ablation Inductively Coupled Plasma Mass Spectrometry to recover trace elements incorporated in growth bands formed between 2014 and 2018. A threefold positive Fe anomaly was identified in early 2016, associated with negative anomalies in several elements. Variation in Ba and Y was coherent with the region's sedimentation dynamics, but also increased after 2016, akin to Pb, V and Zn. Coral growth rates decreased after the disaster. Besides validating M. cavernosa as a reliable archive of ocean chemistry, our results evidence wide-reaching sub-lethal coral contamination in the Abrolhos reefs, as well as different incorporation mechanisms into corals' skeletons.


Assuntos
Antozoários , Colapso Estrutural , Oligoelementos , Animais , Monitoramento Ambiental , Rios
3.
Zootaxa ; 4950(1): zootaxa.4950.1.1, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-33903317

RESUMO

The reef system off the Amazon River mouth extends from Amapá state to Maranhão state along the Brazilian Equatorial Margin, encompassing more than 10,000 km2 of rhodolith beds and high-relief hard structures on the outer shelf and upper slope. This unique hard bottom mosaic is remarkable for being influenced by the turbid and hyposaline plume from the world's largest river, and also for representing a connectivity corridor between the Caribbean and Brazil. Bryozoans were recently recognized as major reef builders in the Southwestern Atlantic, but their diversity off the Amazon River mouth remained unknown. Here, we report on recent collections obtained from 23 to 120 m depth in Northern Brazil. Sixty-five bryozoan taxa were characterized using scanning electron microscopy, including 57, five and three taxa of Cheilostomatida, Cyclostomatida and Ctenostomatida, respectively. Cribrilaria smitti and three genera (Cranosina, Glabrilaria and Thornelya) are new records for Brazil, and 13 new species are herein described: Antropora cruzeiro n. sp., Cranosina gilbertoi n. sp., Cribrilaria lateralis n. sp., Crisia brasiliensis n. sp., Glabrilaria antoniettae n. sp., Micropora amapaensis n. sp., Parasmittina amazonensis n. sp., Plesiocleidochasma arcuatum n. sp., Poricella bifurcata n. sp., Pourtalesella duoavicularia n. sp., Stephanollona domuspusilla n. sp., Therenia dianae n. sp., and Thornelya atlanticoensis n. sp. Our results highlight the biodiversity significance of the Amazon reefs and the need for more comprehensive sampling to clarify the role of bryozoans in modern turbid-zone reefs and rhodolith beds.


Assuntos
Briozoários , Animais , Biodiversidade , Briozoários/classificação , Briozoários/fisiologia , Rios
4.
PLoS One ; 16(2): e0247111, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33617570

RESUMO

Tropical reefs are declining rapidly due to climate changes and local stressors such as water quality deterioration and overfishing. The so-called marginal reefs sustain significant coral cover and growth but are dominated by fewer species adapted to suboptimal conditions to most coral species. However, the dynamics of marginal systems may diverge from that of the archetypical oligotrophic tropical reefs, and it is unclear whether they are more or less susceptible to anthropogenic stress. Here, we present the largest (100 fixed quadrats at five reefs) and longest time series (13 years) of benthic cover data for Southwestern Atlantic turbid zone reefs, covering sites under contrasting anthropogenic and oceanographic forcing. Specifically, we addressed how benthic cover changed among habitats and sites, and possible dominance-shift trends. We found less temporal variation in offshore pinnacles' tops than on nearshore ones and, conversely, higher temporal fluctuation on offshore pinnacles' walls than on nearshore ones. In general, the Abrolhos reefs sustained a stable coral cover and we did not record regional-level dominance shifts favoring other organisms. However, coral decline was evidenced in one reef near a dredging disposal site. Relative abundances of longer-lived reef builders showed a high level of synchrony, which indicates that their dynamics fluctuate under similar drivers. Therefore, changes on those drivers could threaten the stability of these reefs. With the intensification of thermal anomalies and land-based stressors, it is unclear whether the Abrolhos reefs will keep providing key ecosystem services. It is paramount to restrain local stressors that contributed to coral reef deterioration in the last decades, once reversal and restoration tend to become increasingly difficult as coral reefs degrade further and climate changes escalate.


Assuntos
Recifes de Corais , Organismos Aquáticos/fisiologia , Oceano Atlântico , Mudança Climática
5.
Rev. bras. farmacogn ; 29(6): 715-719, Nov.-Dec. 2019. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1057861

RESUMO

ABSTRACT Chemical investigation of the aqueous fraction of the ethanol extract from the Brazilian endemic marine sponge Clathria (Clathria) nicoleae Vieira de Barros, Santos & Pinheiro, 2013, Microcionidae, sampled from a 55 m deep rhodolith bed at the Amazon River mouth, led to the isolation of a new hexapeptide, clathriamide (1). HP-20 resin was used to capture compound 1 from the aqueous fraction, which was purified by additional chromatographic steps. The absolute configuration of the amino acids of 1 was determined by advanced Marfey's analysis using 5-fluoro-2,4-dinitrophenyl-Nα-L-tryptophanamide. The amino acid derivatives analyzed by ultra-performance liquid chromatography coupled to a mass spectrometry using a C8 column enabled a good chromatographic resolution of L-Ile and L-allo-Ile, previously unfeasible using C18 column.

6.
PLoS One ; 14(8): e0220130, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31381568

RESUMO

Dinoflagellates from the Symbiodiniaceae family and corals have an ecologically important endosymbiotic relationship. Scleractinian corals cannot survive for long periods without their symbionts. These algae, also known as zooxanthellae, on the other hand, thrives outside the coral cells. The free-living populations of zooxanthellae are essential for the resilience of the coral to environmental stressors such as temperature anomalies and ocean acidification. Yet, little is known about how ocean acidification may affect the free-living zooxanthellae. In this study we aimed to test morphological, physiological and biochemical responses of zooxanthellae from the Symbiodinium genus isolated from the coral Mussismilia braziliensis, endemic to the Brazilian coast, to acidification led by increased atmospheric CO2. We tested whether photosynthetic yield, cell ultrastructure, cell density and lipid profile would change after up to 16 days of exposure to pH 7.5 in an atmospheric pCO2 of 1633 µatm. Photosynthetic yield and cell density were negatively affected and chloroplasts showed vesiculated thylakoids, indicating morphological damage. Moreover, Symbiodinium fatty acid profile drastically changed in acidified condition, showing lower polyunsaturated fatty acids and higher saturated fatty acids contents, when compared to the control, non-acidified condition. These results show that seawater acidification as an only stressor causes significant changes in the physiology, biochemistry and ultrastructure of free-living Symbiodinium.


Assuntos
Antozoários/microbiologia , Dinoflagellida/citologia , Animais , Atmosfera/química , Dióxido de Carbono/análise , Dióxido de Carbono/química , Carbonatos/química , Proliferação de Células/efeitos dos fármacos , Dinoflagellida/efeitos dos fármacos , Dinoflagellida/metabolismo , Dinoflagellida/fisiologia , Ácidos Graxos/metabolismo , Concentração de Íons de Hidrogênio , Fotossíntese/efeitos dos fármacos , Água do Mar/química
7.
J Nat Prod ; 81(10): 2296-2300, 2018 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-30281303

RESUMO

The new pyrrole-imidazole and pyrrole-guanidine alkaloids 4-debromooroidin (1), 4-debromougibohlin (2), 5-debromougibohlin (3), and 5-bromopalau'amine (4), along with the known hymenidin (5) and (+)-monobromoisophakellin (6), have been isolated from a Dictyonella sp. marine sponge, collected at the Amazon River mouth. The bromine-substitution pattern observed for compounds 1, 2 and 4 is unusual among bromopyrrole alkaloids isolated from marine sponges. The 20S proteasome inhibitory activities of compounds 1-6 have been recorded, with 5-bromopalau'amine (4) being the most active in this series.


Assuntos
Poríferos/química , Inibidores de Proteassoma/química , Inibidores de Proteassoma/farmacologia , Pirróis/química , Pirróis/farmacologia , Animais , Brasil , Estrutura Molecular , Complexo de Endopeptidases do Proteassoma , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
8.
PeerJ ; 6: e5419, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30128199

RESUMO

Most coral reefs have recently experienced acute changes in benthic community structure, generally involving dominance shifts from slow-growing hard corals to fast-growing benthic invertebrates and fleshy photosynthesizers. Besides overfishing, increased nutrification and sedimentation are important drivers of this process, which is well documented at landscape scales in the Caribbean and in the Indo-Pacific. However, small-scale processes that occur at the level of individual organisms remain poorly explored. In addition, the generality of coral reef decline models still needs to be verified on the vast realm of turbid-zone reefs. Here, we documented the outcome of interactions between an endangered Brazilian-endemic coral (Mussismilia braziliensis) and its most abundant contacting organisms (turf, cyanobacteria, corals, crustose coralline algae and foliose macroalgae). Our study was based on a long (2006-2016) series of high resolution data (fixed photoquadrats) acquired along a cross-shelf gradient that includes coastal unprotected reefs and offshore protected sites. The study region (Abrolhos Bank) comprises the largest and richest coralline complex in the South Atlantic, and a foremost example of a turbid-zone reef system with low diversity and expressive coral cover. Coral growth was significantly different between reefs. Coral-algae contacts predominated inshore, while cyanobacteria and turf contacts dominated offshore. An overall trend in positive coral growth was detected from 2009 onward in the inshore reef, whereas retraction in live coral tissue was observed offshore during this period. Turbidity (+) and cyanobacteria (-) were the best predictors of coral growth. Complimentary incubation experiments, in which treatments of Symbiodinium spp. from M. braziliensis colonies were subjected to cyanobacterial exudates, showed a negative effect of the exudate on the symbionts, demonstrating that cyanobacteria play an important role in coral tissue necrosis. Negative effects of cyanobacteria on living coral tissue may remain undetected from percent cover estimates gathered at larger spatial scales, as these ephemeral organisms tend to be rapidly replaced by longer-living macroalgae, or complex turf-like consortia. The cross-shelf trend of decreasing turbidity and macroalgae abundance suggests either a direct positive effect of turbidity on coral growth, or an indirect effect related to the higher inshore cover of foliose macroalgae, constraining cyanobacterial abundance. It is unclear whether the higher inshore macroalgal abundance (10-20% of reef cover) is a stable phase related to a long-standing high turbidity background, or a contemporary response to anthropogenic stress. Our results challenge the idea that high macroalgal cover is always associated with compromised coral health, as the baselines for turbid zone reefs may derive sharply from those of coral-dominated reefs that dwell under oligotrophic conditions.

9.
Microb Ecol ; 74(4): 868-876, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28624904

RESUMO

Holobionts are characterized by the relationship between host and their associated organisms such as the biofilm associated with macroalgae. Considering that light is essential to macroalgae survival, the aim of this study was to verify the effect of light on the heterotrophic activity in biofilms of the brown macroalgae Sargassum furcatum during its growth cycle. Measurements of heterotrophic activity were done under natural light levels at different times during a daily cycle and under an artificial extinction of natural light during the afternoon. We also measured Sargassum primary production under these light levels in the afternoon. Both measurements were done with and without photosynthesis inhibitor and antibiotics. Biofilm composition was mainly represented by bacteria but diatoms, cyanobacteria, and other organisms were also common. When a peak of diatom genera was recorded, the heterotrophic activity of the biofilm was higher. Heterotrophic activity was usually highest during the afternoon and the presence of a photosynthesis inhibitor caused an average reduction of 17% but there was no relationship with Sargassum primary production. These results indicate that autotrophic production in the biofilm was reduced by the inhibitor with consequences on bacterial activity. Heterotrophic activity was mainly bacterial and the antibiotics chloramphenicol and penicillin were more effective than streptomycin. We suggest primary producers in the biofilm are more important to increase bacterial activity than the macroalgae itself because of coherence of the peaks of heterotrophic and autotrophic activity in biofilm during the afternoon and the effects of autotrophic inhibitors on heterotrophic activity.


Assuntos
Antibacterianos/farmacologia , Processos Autotróficos , Fenômenos Fisiológicos Bacterianos , Biofilmes , Luz , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Biofilmes/efeitos da radiação , Brasil , Ritmo Circadiano , Sargassum/microbiologia , Estações do Ano
10.
PLoS One ; 8(7): e67708, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23844071

RESUMO

Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.


Assuntos
Membrana Celular/fisiologia , Fenômenos Fisiológicos Celulares , Elasticidade , Actinas/metabolismo , Animais , Astrócitos/citologia , Astrócitos/fisiologia , Linhagem Celular Tumoral , Vesículas Revestidas/fisiologia , Módulo de Elasticidade , Humanos , Macrófagos/citologia , Macrófagos/fisiologia , Camundongos , Microglia/citologia , Microglia/fisiologia , Neurônios/citologia , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA