Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Gac Med Mex ; 158(3): 141-149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35894744

RESUMO

Complement regulatory proteins (mCRPs) CD55, CD46 and CD59 have been proposed as key elements in therapeutic resistance against cancer. mCRP-expressing tumor cells, in addition to hindering trastuzumab, pertuzumab and sacituzumab-govitecan therapeutic activity in breast cancer, can regulate biological processes that promote tumor progression. This review describes the structure of mCRPs and analyzes their expression using transcriptomic databases from breast cancer patients, in addition to collecting information on mCRPs interactions and signaling in tumor cells. Given that mCRPs are relevant targets, several strategies that have been explored for their inhibition and regulation in order to increase therapeutic efficacy and prevent cancer resistance and progression are described.


Se ha propuesto a las proteínas reguladoras de complemento (mCRP) CD55, CD46 y CD59 como piezas clave en la resistencia terapéutica contra el cáncer. Las células tumorales que expresan las mCRP, además de obstaculizar la actividad terapéutica de trastuzumab, pertuzumab y sacituzumab-govitecan en cáncer de mama, pueden regular procesos biológicos que promueven la progresión tumoral. Esta revisión describe la estructura de las mCRP y analiza su expresión a partir de bases de datos transcriptómicos de pacientes con cáncer de mama; también recopila información de interacciones y señalización de las mCRP en células tumorales. Dado que estas mCRP son dianas relevantes, se describen diversas estrategias para su inhibición y regulación para incrementar la eficacia terapéutica y evitar la resistencia y progresión del cáncer.


Assuntos
Neoplasias da Mama , Neoplasias da Mama/tratamento farmacológico , Antígenos CD55/metabolismo , Ativação do Complemento , Proteínas do Sistema Complemento/fisiologia , Feminino , Humanos , Proteína Cofatora de Membrana/metabolismo , Trastuzumab
2.
Gac. méd. Méx ; 158(3): 150-159, may.-jun. 2022. tab, graf
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1404831

RESUMO

Resumen Se ha propuesto a las proteínas reguladoras de complemento (mCRP) CD55, CD46 y CD59 como piezas clave en la resistencia terapéutica contra el cáncer. Las células tumorales que expresan las mCRP, además de obstaculizar la actividad terapéutica de trastuzumab, pertuzumab y sacituzumab-govitecan en cáncer de mama, pueden regular procesos biológicos que promueven la progresión tumoral. Esta revisión describe la estructura de las mCRP y analiza su expresión a partir de bases de datos transcriptómicos de pacientes con cáncer de mama; también recopila información de interacciones y señalización de las mCRP en células tumorales. Dado que estas mCRP son dianas relevantes, se describen diversas estrategias para su inhibición y regulación para incrementar la eficacia terapéutica y evitar la resistencia y progresión del cáncer.


Abstract Complement regulatory proteins (mCRPs) CD55, CD46 and CD59 have been proposed as key elements in therapeutic resistance against cancer. mCRP-expressing tumor cells, in addition to hindering trastuzumab, pertuzumab and sacituzumab-govitecan therapeutic activity in breast cancer, can regulate biological processes that promote tumor progression. This review describes the structure of mCRPs and analyzes their expression using transcriptomic databases from breast cancer patients, in addition to collecting information on mCRPs interactions and signaling in tumor cells. Given that mCRPs are relevant targets, several strategies that have been explored for their inhibition and regulation in order to increase therapeutic efficacy and prevent cancer resistance and progression are described.

3.
Methods Mol Biol ; 2313: 281-294, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34478145

RESUMO

Therapeutic monoclonal antibodies (mAbs) are complex bioengineered proteins that require to be routinely characterized with robust and reliable bioassays. Infliximab was the first anti-TNFα mAb approved for use in humans and its use has revolutionized the treatment TNF-mediated inflammatory disorders. The mechanism of action (MOA) of infliximab involves its binding to soluble (s) and membrane (m) TNFα. Here, we describe two simple in vitro bioassays for the assessment of key activities of infliximab. First, a bioassay for TNFα neutralization, which evaluates the Fab binding to sTNFα and the consequent reduction in the activation of TNFα receptors and TNFα-induced expression of adhesion molecules on endothelial cells. A second bioassay evaluates the triggering of Complement-Dependent Cytotoxicity (CDC) in cells expressing mTNFα, which requires the interaction of infliximab-Fc with proteins of the complement system. In both cases, the biological responses are measured by flow cytometry, which is accessible for most laboratories. The methods reported here can be easily adapted to other therapeutic mAbs with similar MOA.


Assuntos
Bioensaio , Fator de Necrose Tumoral alfa , Anticorpos Monoclonais , Antineoplásicos Imunológicos , Células Endoteliais , Humanos , Infliximab
4.
World J Stem Cells ; 13(7): 861-876, 2021 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-34367481

RESUMO

Cancer stem cells (CSCs) are tumor cells that share functional characteristics with normal and embryonic stem cells. CSCs have increased tumor-initiating capacity and metastatic potential and lower sensitivity to chemo- and radiotherapy, with important roles in tumor progression and the response to therapy. Thus, a current goal of cancer research is to eliminate CSCs, necessitating an adequate phenotypic and functional characterization of CSCs. Strategies have been developed to identify, enrich, and track CSCs, many of which distinguish CSCs by evaluating the expression of surface markers, the initiation of specific signaling pathways, and the activation of master transcription factors that control stemness in normal cells. We review and discuss the use of reporter gene systems for identifying CSCs. Reporters that are under the control of aldehyde dehydrogenase 1A1, CD133, Notch, Nanog homeobox, Sex-determining region Y-box 2, and POU class 5 homeobox can be used to identify CSCs in many tumor types, track cells in real time, and screen for drugs. Thus, reporter gene systems, in combination with in vitro and in vivo functional assays, can assess changes in the CSCs pool. We present relevant examples of these systems in the evaluation of experimental CSCs-targeting therapeutics, demonstrating their value in CSCs research.

5.
Front Plant Sci ; 12: 641420, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054890

RESUMO

This year, a respiratory virus caused an emergency pandemic alert in health services around the world, showing the need for biotechnological approaches to fight these diseases. The influenza virus is one of the main viral agents that generate pandemic outbreaks. Currently, the majority of co-circulating influenza A virus (IAV) strains are adamantine- and oseltamivir-resistant strains, and the challenge is to find new antivirals for more efficient treatments. The antiviral entry blocker (EB) peptide is a promising candidate for blocking the virus entry into cells. The aim of this research was to express the EB peptide in the microalgae Chlamydomonas reinhardtii and test its antiviral activity against IAV in vitro. The EB peptide nucleotide sequence was introduced into the nuclear genome of microalgae using Agrobacterium tumefaciens transformation. The EB peptide amount produced in transformed microalgae was 4.99 ± 0.067% of the total soluble protein. In hemagglutination inhibition assays using influenza A/H1N1 pdm and influenza A H1N1/Virginia/ATCC/2009 strains, we reported that the EB peptide extract from the microalgae showed 100-fold higher efficiency than the EB synthetic peptide. In addition, both the EB peptide extract and synthetic peptide inhibited viral replication in MDCK cells (IC50 = 20.7 nM and IC50 = 754.4 nM, respectively); however, the EB peptide extract showed a 32-fold higher antiviral effectiveness than the synthetic peptide against influenza A/H1N1 pdm. Extracts from untransformed and transformed microalgae and synthetic peptide did not show cytotoxic effect on MDCK cell monolayers. Thus, C. reinhardtii may be a fast, safe, and effective expression platform for production of peptides with significant antiviral activity and can be used as a prophylactic treatment to reduce viral propagation.

6.
J Immunotoxicol ; 14(1): 169-177, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28707490

RESUMO

Transferon, a human dialyzable leukocyte extract (hDLE), is a biotherapeutic that comprises a complex mixture of low-molecular-weight peptides (< 10 kDa) and is used to treat diseases with an inflammatory component. Some biotherapeutics, including those composed of peptides, can induce anti-drug antibodies (ADA) that block or diminish their therapeutic effect. Nevertheless, few studies have evaluated peptide-derived drug immunogenicity. In this study, the immunogenicity of Transferon was examined in a murine model during an immunization scheme using the following adjuvants: Al(OH)3, incomplete Freund's adjuvant (IFA), or Titermax Gold. The inoculation scheme entailed three routes of administration (intraperitoneal, Day 1; subcutaneous, Day 7; and intramuscular, Day 14) using 200 µg Transferon/inoculation. Serum samples were collected on Day 21. Total IgG levels were quantitated by affinity chromatography, and specific antibodies against components of Transferon were analyzed by dot-blot and ELISA. Ovalbumin (OVA, 44 kDa) and peptides from hydrolyzed collagen (PFHC, < 17 kDa) were used as positive and negative controls, respectively, in the same inoculation scheme and analyses for Transferon. OVA, PFHC, and Transferon increased total IgG concentrations in mice. However, only IgG antibodies against OVA were detected. Based on the results, it is concluded that Transferon does not induce generation of specific antibodies against its components in this model, regardless of adjuvant and route of administration. These results support the safety of Transferon by confirming its inability to induce ADA in this animal model.


Assuntos
Misturas Complexas/administração & dosagem , Fatores Imunológicos/administração & dosagem , Imunoterapia/métodos , Inflamação/terapia , Peptídeos/administração & dosagem , Adjuvantes Imunológicos/administração & dosagem , Animais , Misturas Complexas/imunologia , Humanos , Imunoglobulina G/sangue , Fatores Imunológicos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Modelos Animais , Ovalbumina/imunologia , Peptídeos/imunologia
7.
J Immunol Res ; 2015: 146305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25984538

RESUMO

Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that are released on disruption of peripheral blood leukocytes from healthy donors. DLEs improve clinical responses in infections, allergies, cancer, and immunodeficiencies. Transferon is a human DLE that has been registered as a hemoderivate by Mexican health authorities and commercialized nationally. To develop an animal model that could be used routinely as a quality control assay for Transferon, we standardized and validated a murine model of cutaneous HSV-1 infection. Using this model, we evaluated the activity of 27 Transferon batches. All batches improved the survival of HSV-1-infected mice, wherein average survival rose from 20.9% in control mice to 59.6% in Transferon-treated mice. The activity of Transferon correlated with increased serum levels of IFN-γ and reduced IL-6 and TNF-α concentrations. Our results demonstrate that (i) this mouse model of cutaneous herpes can be used to examine the activity of DLEs, such as Transferon; (ii) the assay can be used as a routine test for batch release; (iii) Transferon is produced with high homogeneity between batches; (iv) Transferon does not have direct virucidal, cytoprotective, or antireplicative effects; and (v) the protective effect of Transferon in vivo correlates with changes in serum cytokines.


Assuntos
Extratos Celulares/farmacologia , Herpes Simples/tratamento farmacológico , Herpesvirus Humano 1/efeitos dos fármacos , Leucócitos/metabolismo , Dermatopatias Virais/tratamento farmacológico , Animais , Bioensaio , Linhagem Celular , Chlorocebus aethiops , Modelos Animais de Doenças , Herpes Simples/virologia , Interferon gama/sangue , Interleucina-6/sangue , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dermatopatias Virais/virologia , Fator de Necrose Tumoral alfa/sangue , Células Vero
8.
J Med Food ; 18(11): 1239-46, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25867497

RESUMO

Worldwide, the most highly consumed meat is of porcine origin. The production and distribution of swine meat are affected by diverse health matters, such as influenza and diarrhea, which cause head losses and require the use of antibiotics and other drugs in hog farms. To stimulate newborn piglet immune responses and increase resistance to infections, we developed a spray-drying technique to produce dried swine dialyzable spleen extract (sDSE), an immunomodulator. Based on the size-exclusion ultra performance liquid chromatography quantitative analysis, it was possible to recover up to 58% of the product after the drying process. The biological activity of orally administered dried sDSE increased mouse survival and induced cytokine production in a herpes infection model.


Assuntos
Antivirais/uso terapêutico , Produtos Biológicos/uso terapêutico , Citocinas/metabolismo , Herpes Simples/prevenção & controle , Fatores Imunológicos/uso terapêutico , Baço , Suínos , Animais , Antivirais/farmacologia , Produtos Biológicos/farmacologia , Dessecação/métodos , Diálise , Modelos Animais de Doenças , Herpes Simples/imunologia , Herpes Simples/metabolismo , Fatores Imunológicos/farmacologia , Masculino , Camundongos Endogâmicos BALB C
9.
J Pharm Biomed Anal ; 88: 289-94, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24099727

RESUMO

Human dialyzable leukocyte extracts (DLEs) are heterogeneous mixtures of low-molecular-weight peptides that modulate immune responses in various diseases. Due their complexity, standardized methods to identify their physicochemical properties and determine that production batches are biologically active must be established. We aimed to develop and validate a size exclusion ultra performance chromatographic (SE-UPLC) method to characterize Transferon™, a DLE that is produced under good manufacturing practices (GMPs). We analyzed an internal human DLE standard and 10 representative batches of Transferon™, all of which had a chromatographic profile characterized by 8 main peaks and a molecular weight range between 17.0 and 0.2kDa. There was high homogeneity between batches with regard to retention times and area percentages, varying by less than 0.2% and 30%, respectively, and the control chart was within 3 standard deviations. To analyze the biological activity of the batches, we studied the ability of Transferon™ to stimulate IFN-γ production in vitro. Transferon™ consistently induced IFN-γ production in Jurkat cells, demonstrating that this method can be included as a quality control step in releasing Transferon™ batches. Because all analyzed batches complied with the quality attributes that were evaluated, we conclude that the DLE Transferon™ is produced with high homogeneity.


Assuntos
Interferon gama/química , Adjuvantes Imunológicos/isolamento & purificação , Movimento Celular/efeitos dos fármacos , Quimiotaxia , Cromatografia Líquida de Alta Pressão , Citocinas/metabolismo , Humanos , Inflamação , Células Jurkat , Leucócitos/citologia , Peso Molecular , Peptídeos/química , Reprodutibilidade dos Testes , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA