Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 7(1): 17997, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29269845

RESUMO

We have assessed the stabilizing role that induced co-deposition has in the growth of nanostructured NiW alloy films by electrodeposition on polished steel substrates, under pulsed galvanostatic conditions. We have compared the kinetic roughening properties of NiW films with those of Ni films deposited under the same conditions, as assessed by Atomic Force Microscopy. The surface morphologies of both systems are super-rough at short times, but differ at long times: while a cauliflower-like structure dominates for Ni, the surfaces of NiW films display a nodular morphology consistent with more stable, conformal growth, whose height fluctuations are in the Kardar-Parisi-Zhang universality class of rough two-dimensional interfaces. These differences are explained by the mechanisms controlling surface growth in each case: mass transport through the electrolyte (Ni) and attachment of the incoming species to the growing interface (NiW). Thus, the long-time conformal growth regime is characteristic of electrochemical induced co-deposition under current conditions in which surface kinetics is hindered due to a complex reaction mechanism. These results agree with a theoretical model of surface growth in diffusion-limited systems, in which the key parameter is the relative importance of mass transport with respect to the kinetics of the attachment reaction.

2.
Langmuir ; 33(27): 6785-6793, 2017 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-28625050

RESUMO

We have studied the products of the controversial synthesis of HAuCl4 with Na2S, which include gold nanostructures (Au NSs) that absorb in the near-infrared (NIR) region and are highly promising for photothermal therapies and other nanomedical applications. From high-resolution transmission electron microscopy, X-ray absorption spectroscopy, and small-angle X-ray scattering, we have found that only metallic Au NSs are formed as a result of this synthesis, with no detectable amount of gold sulfide or other oxidized gold species that could account for the NIR absorption. Different sulfur species are adsorbed on the Au NSs, mainly sulfides (monomeric sulfur) and polysulfides, similar to what is found on the planar gold surfaces, therefore precluding the idea that thiosulfate or other oxidized species are the actual reducing agents for Au(III) ions. The presence of strongly adsorbed S species, which are difficult to remove from the gold surface, is of great importance for their applications as regards toxicity and use of postfunctionalization strategies to anchor biomolecules and/or to increase circulation time after administration.

3.
Nanoscale ; 7(41): 17563-72, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26446736

RESUMO

Bacterial adhesion is the first and a significant step in establishing infection. This adhesion normally occurs in the presence of flow of fluids. Therefore, bacterial adhesins must be able to provide high strength interactions with their target surface in order to maintain the adhered bacteria under hydromechanical stressing conditions. In the case of B. pertussis, a Gram-negative bacterium responsible for pertussis, a highly contagious human respiratory tract infection, an important protein participating in the adhesion process is a 220 kDa adhesin named filamentous haemagglutinin (FHA), an outer membrane and also secreted protein that contains recognition domains to adhere to ciliated respiratory epithelial cells and macrophages. In this work, we obtained information on the cell-surface localization and distribution of the B. pertussis adhesin FHA using an antibody-functionalized AFM tip. Through the analysis of specific molecular recognition events we built a map of the spatial distribution of the adhesin which revealed a non-homogeneous pattern. Moreover, our experiments showed a force induced reorganization of the adhesin on the surface of the cells, which could explain a reinforced adhesive response under external forces. This single-molecule information contributes to the understanding of basic molecular mechanisms used by bacterial pathogens to cause infectious disease and to gain insights into the structural features by which adhesins can act as force sensors under mechanical shear conditions.


Assuntos
Adesinas Bacterianas/metabolismo , Anticorpos Antibacterianos/química , Bordetella pertussis/metabolismo , Bordetella pertussis/ultraestrutura , Microscopia de Força Atômica , Fatores de Virulência de Bordetella/metabolismo , Humanos
4.
Phys Chem Chem Phys ; 17(21): 14201-7, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25959866

RESUMO

Ni-W nanostructured coatings electrodeposited on steel by galvanostatic pulses were functionalized by tetraethoxysilane (TEOS) and octadecyltrichlorosilane (OTS) in a two-step procedure. A silica-rich layer is formed by the reaction of TEOS with the metal coating surface oxides, which allows a further reaction with OTS forming a hydrocarbon-silica outer network. This mixed silane layer provides hydrophobicity and improves the corrosion behavior of the Ni-W surface coatings without modifying their excellent mechanical properties.

5.
Langmuir ; 28(17): 6839-47, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22497438

RESUMO

The adsorption of 4-mercaptopyridine on Au(111) from aqueous or ethanolic solutions is studied by different surface characterization techniques and density functional theory calculations (DFT) including van der Waals interactions. X-ray photoelectron spectroscopy and electrochemical data indicate that self-assembly from 4-mercaptopyridine-containing aqueous 0.1 M NaOH solutions for short immersion times (few minutes) results in a 4-mercaptopyridine (PyS) self-assembled monolayer (SAM) with surface coverage 0.2. Scanning tunneling microscopy images show an island-covered Au surface. The increase in the immersion time from minutes to hours results in a complete SAM degradation yielding adsorbed sulfur and a heavily pitted Au surface. Adsorbed sulfur is also the main product when the self-assembly process is made in ethanolic solutions irrespective of the immersion time. We demonstrate for the first time that a surface reaction is involved in PyS SAM decomposition in ethanol, a surface process not favored in water. DFT calculations suggest that the surface reaction takes place via disulfide formation driven by the higher stability of the S-Au(111) system. Other reactions that contribute to sulfidization are also detected and discussed.

6.
Langmuir ; 28(19): 7461-9, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22515332

RESUMO

Adherence to a biological surface allows bacteria to colonize and persist within the host and represents an essential first step in the pathogenesis of most bacterial diseases. Consequently, the physicochemical properties of the outer membrane in bacteria play a key role for attachment to surfaces and therefore for biofilm formation. Bordetella pertussis is a Gram-negative bacterium that colonizes the respiratory tract of humans, producing whooping cough or pertussis, a highly infectious disease. B. pertussis uses various adhesins exposed on its surface to promote cell-surface and cell-cell interactions. The most dominant adhesin function is displayed by filamentous hemagglutinin (FHA). B. pertussis Tohama I wild-type (Vir+) strain and two defective mutants, an avirulent (Vir-) and a FHA-deficient (FHA-) B. pertussis strains were studied by AFM under physiological conditions to evaluate how the presence or absence of adhesins affects the mechanical properties of the B. pertussis cell surface. Quantitative information on the nanomechanical properties of the bacterial envelope was obtained by AFM force-volume analysis. These studies suggested that the presence of virulence factors is correlated with an increase in the average membrane rigidity, which is largely influenced by the presence of FHA. Moreover, for this system we built a nanoscale stiffness map that reveals an inhomogeneous spatial distribution of Young modulus as well as the presence of rigid nanodomains on the cell surface.


Assuntos
Adesinas Bacterianas/metabolismo , Fenômenos Biomecânicos/fisiologia , Bordetella pertussis/metabolismo , Virulência/fisiologia
7.
Colloids Surf B Biointerfaces ; 82(2): 536-42, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21115280

RESUMO

Biofilm development involves several stages and flagellar expression of bacteria is considered an important factor in this process. However, its role in the earliest stage of biofilm development is not yet clear. In order to analyse this topic, Pseudomonas fluorescens samples were trapped on a patterned gold surface with sub-microtrenches (ST) so as to hinder their motility, and nanostructured gold with random orientation (SR) was used as control substrate. Atomic force microscopic (AFM) observations were made on untreated samples. Initially, ca. 75% of the flagella on ST and 85% of flagella on SR are oriented towards the neighbouring bacteria. Some of them made contact and surrounded the cells. Subsequently, 2-D raft structures formed on SR inert substrates with lateral curly flagella, while those at the poles of the rafts turned towards the nearest cell group. A few flagella and the formation of 3-D bacterial structures were observed on toxic substrates like copper. Results showed that patterned substrates are suitable tools to detect the orientation of flagella in the earliest stage of biofilm formation on solid opaque surfaces avoiding sample pre-treatment.


Assuntos
Aderência Bacteriana , Biofilmes , Flagelos/metabolismo , Microscopia de Força Atômica/métodos , Pseudomonas fluorescens/metabolismo , Proteínas de Bactérias/metabolismo , Cobre/química , Meios de Cultura/química , Eletroquímica/métodos , Ouro/química , Imageamento Tridimensional , Propriedades de Superfície , Temperatura
8.
Langmuir ; 26(22): 17068-74, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-20949962

RESUMO

A multitechnique study of 6-mercaptopurine (6MP) adsorption on Au(111) is presented. The molecule adsorbs on Au(111), originating short-range ordered domains and irregular nanosized aggregates with a total surface coverage by chemisorbed species smaller than those found for alkanethiol SAMs, as derived from scanning tunneling microscopy (STM) and electrochemical results. X-ray photoelectron spectroscopy (XPS) results show the presence of a thiolate bond, whereas density functional theory (DFT) data indicate strong chemisorption via a S-Au bond and additional binding to the surface via a N-Au bond. From DFT data, the positive charge on the Au topmost surface atoms is markedly smaller than that found for Au atoms in alkanethiolate SAMs. The adsorption of 6MP originates Au atom removal from step edges but no vacancy island formation at (111) terraces. The small coverage of Au islands after 6MP desorption strongly suggests the presence of only a small population of Au adatom-thiolate complexes. We propose that the absence of the Au-S interface reconstruction results from the lack of significant repulsive forces acting at the Au surface atoms.

9.
J Colloid Interface Sci ; 350(2): 402-8, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-20656295

RESUMO

Titanium is a corrosion-resistant and biocompatible material widely used in medical and dental implants. Titanium surfaces, however, are prone to bacterial colonization that could lead to infection, inflammation, and finally to implant failure. Silver nanoparticles (AgNPs) have demonstrated an excellent performance as biocides, and thus their integration to titanium surfaces is an attractive strategy to decrease the risk of implant failure. In this work a simple and efficient method is described to modify Ti/TiO(2) surfaces with citrate-capped AgNPs. These nanoparticles spontaneously adsorb on Ti/TiO(2), forming nanometer-sized aggregates consisting of individual AgNPs that homogeneously cover the surface. The modified AgNP-Ti/TiO(2) surface exhibits a good resistance to colonization by Pseudomonas aeruginosa, a model system for biofilm formation.


Assuntos
Antibacterianos/farmacologia , Ácido Cítrico/química , Nanopartículas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata/química , Titânio/química , Adsorção , Antibacterianos/química , Ácido Cítrico/farmacologia , Microscopia de Força Atômica , Prata/farmacologia , Propriedades de Superfície , Titânio/farmacologia
10.
Chem Soc Rev ; 39(5): 1805-34, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20419220

RESUMO

Self-assembled monolayers (SAMs) of alkanethiols and dialkanethiols on gold are key elements for building many systems and devices with applications in the wide field of nanotechnology. Despite the progress made in the knowledge of these fascinating two-dimensional molecular systems, there are still several "hot topics" that deserve special attention in order to understand and to control their physical and chemistry properties at the molecular level. This critical review focuses on some of these topics, including the nature of the molecule-gold interface, whose chemistry and structure remain elusive, the self-assembly process on planar and irregular surfaces, and on nanometre-sized objects, and the chemical reactivity and thermal stability of these systems in ambient and aqueous solutions, an issue which seriously limits their technological applications (375 references).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA