Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Einstein (Sao Paulo) ; 22: eAO0931, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38567917

RESUMO

OBJECTIVE: This study aimed to present a temporal and spatial analysis of the 2018 measles outbreak in Brazil, particularly in the metropolitan city of Manaus in the Amazon region, and further introduce a new tool for spatial analysis. METHODS: We analyzed the geographical data of the residences of over 7,000 individuals with measles in Manaus during 2018 and 2019. Spatial and temporal analyses were conducted to characterize various aspects of the outbreak, including the onset and prevalence of symptoms, demographics, and vaccination status. A visualization tool was also constructed to display the geographical and temporal distribution of the reported measles cases. RESULTS: Approximately 95% of the included participants had not received vaccination within the past decade. Heterogeneity was observed across all facets of the outbreak, including variations in the incubation period and symptom presentation. Age distribution exhibited two peaks, occurring at one year and 18 years of age, and the potential implications of this distribution on predictive analysis were discussed. Additionally, spatial analysis revealed that areas with the highest case densities tended to have the lowest standard of living. CONCLUSION: Understanding the spatial and temporal spread of measles outbreaks provides insights for decision-making regarding measures to mitigate future epidemics.


Assuntos
Sarampo , Humanos , Lactente , Brasil/epidemiologia , Sarampo/epidemiologia , Surtos de Doenças , Vacinação , Análise Espacial
2.
JAMA Intern Med ; 184(1): 70-80, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38048090

RESUMO

Importance: Bothrops venom acts almost immediately at the bite site and causes tissue damage. Objective: To investigate the feasibility and explore the safety and efficacy of low-level laser therapy (LLLT) in reducing the local manifestations of B atrox envenomations. Design, Setting, and Participants: This was a double-blind randomized clinical trial conducted at Fundação de Medicina Tropical Doutor Heitor Vieira Dourado, in Manaus, Brazil. A total of 60 adult participants were included from November 2020 to March 2022, with 30 in each group. Baseline characteristics on admission were similarly distributed between groups. Data analysis was performed from August to December 2022. Intervention: The intervention group received LLLT combined with regular antivenom treatment. The laser used was a gallium arsenide laser with 4 infrared laser emitters and 4 red laser emitters, 4 J/cm2 for 40 seconds at each application point. Main Outcomes and Measures: Feasibility was assessed by eligibility, recruitment, and retention rates; protocol fidelity; and patients' acceptability. The primary efficacy outcome of this study was myolysis estimated by the value of creatine kinase (U/L) on the third day of follow-up. Secondary efficacy outcomes were (1) pain intensity, (2) circumference measurement ratio, (3) extent of edema, (4) difference between the bite site temperature and that of the contralateral limb, (5) need for the use of analgesics, (6) frequency of secondary infections, and (7) necrosis. These outcomes were measured 48 hours after admission. Disability assessment was carried out from 4 to 6 months after patients' discharge. P values for outcomes were adjusted with Bonferroni correction. Results: A total of 60 patients (mean [SD] age, 43.2 [15.3] years; 8 female individuals [13%] and 52 male individuals [87%]) were included. The study was feasible, and patient retention and acceptability were high. Creatine kinase was significantly lower in the LLLT group (mean [SD], 163.7 [160.0] U/L) 48 hours after admission in relation to the comparator (412.4 [441.3] U/L) (P = .03). Mean (SD) pain intensity (2.9 [2.7] vs 5.0 [2.4]; P = .004), circumference measurement ratio (6.6% [6.6%] vs 17.1% [11.6%]; P < .001), and edema extent (25.8 [15.0] vs 40.1 [22.7] cm; P = .002) were significantly lower in the LLLT group in relation to the comparator. No difference was observed between the groups regarding the mean difference between the bite site temperature and the contralateral limb. Secondary infections, necrosis, disability outcomes, and the frequency of need for analgesics were similar in both groups. No adverse event was observed. Conclusions and Relevance: The data from this randomized clinical trial suggest that the use of LLLT was feasible and safe in a hospital setting and effective in reducing muscle damage and the local inflammatory process caused by B atrox envenomations. Trial Registration: Brazilian Registry of Clinical Trials Identifier: RBR-4qw4vf.


Assuntos
Coinfecção , Terapia com Luz de Baixa Intensidade , Mordeduras de Serpentes , Adulto , Animais , Feminino , Humanos , Masculino , Analgésicos , Bothrops atrox , Creatina Quinase , Edema/complicações , Necrose/complicações , Mordeduras de Serpentes/terapia , Mordeduras de Serpentes/complicações , Resultado do Tratamento , Pessoa de Meia-Idade
3.
Einstein (Säo Paulo) ; 22: eAO0931, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1550238

RESUMO

ABSTRACT Objective: This study aimed to present a temporal and spatial analysis of the 2018 measles outbreak in Brazil, particularly in the metropolitan city of Manaus in the Amazon region, and further introduce a new tool for spatial analysis. Methods: We analyzed the geographical data of the residences of over 7,000 individuals with measles in Manaus during 2018 and 2019. Spatial and temporal analyses were conducted to characterize various aspects of the outbreak, including the onset and prevalence of symptoms, demographics, and vaccination status. A visualization tool was also constructed to display the geographical and temporal distribution of the reported measles cases. Results: Approximately 95% of the included participants had not received vaccination within the past decade. Heterogeneity was observed across all facets of the outbreak, including variations in the incubation period and symptom presentation. Age distribution exhibited two peaks, occurring at one year and 18 years of age, and the potential implications of this distribution on predictive analysis were discussed. Additionally, spatial analysis revealed that areas with the highest case densities tended to have the lowest standard of living. Conclusion: Understanding the spatial and temporal spread of measles outbreaks provides insights for decision-making regarding measures to mitigate future epidemics.

4.
Front Immunol ; 14: 1229611, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37662953

RESUMO

Background: The novel coronavirus disease 2019 (COVID-19) presents with complex pathophysiological effects in various organ systems. Following the COVID-19, there are shifts in biomarker and cytokine equilibrium associated with altered physiological processes arising from viral damage or aggressive immunological response. We hypothesized that high daily dose methylprednisolone improved the injury biomarkers and serum cytokine profiles in COVID-19 patients. Methods: Injury biomarker and cytokine analysis was performed on 50 SARS-Cov-2 negative controls and 101 hospitalized severe COVID-19 patients: 49 methylprednisolone-treated (MP group) and 52 placebo-treated serum samples. Samples from the treated groups collected on days D1 (pre-treatment) all the groups, D7 (2 days after ending therapy) and D14 were analyzed. Luminex assay quantified the biomarkers HMGB1, FABP3, myoglobin, troponin I and NTproBNP. Immune mediators (CXCL8, CCL2, CXCL9, CXCL10, TNF, IFN-γ, IL-17A, IL-12p70, IL-10, IL-6, IL-4, IL-2, and IL-1ß) were quantified using cytometric bead array. Results: At pretreatment, the two treatment groups were comparable demographically. At pre-treatment (D1), injury biomarkers (HMGB1, TnI, myoglobin and FABP3) were distinctly elevated. At D7, HMGB1 was significantly higher in the MP group (p=0.0448) compared to the placebo group, while HMGB1 in the placebo group diminished significantly by D14 (p=0.0115). Compared to healthy control samples, several immune mediators (IL-17A, IL-6, IL-10, MIG, MCP-1, and IP-10) were considerably elevated at baseline (all p≤0.05). At D7, MIG and IP-10 of the MP-group were significantly lower than in the placebo-group (p=0.0431, p=0.0069, respectively). Longitudinally, IL-2 (MP-group) and IL-17A (placebo-group) had increased significantly by D14. In placebo group, IL-2 and IL-17A continuously increased, as IL-12p70, IL-10 and IP-10 steadily decreased during follow-up. The MP treated group had IL-2, IFN-γ, IL-17A and IL-12p70 progressively increase while IL-1ß and IL-10 gradually decreased towards D14. Moderate to strong positive correlations between chemokines and cytokines were observed on D7 and D14. Conclusion: These findings suggest MP treatment could ameliorate levels of myoglobin and FABP3, but appeared to have no impact on HMGB1, TnI and NTproBNP. In addition, methylprednisolone relieves the COVID-19 induced inflammatory response by diminishing MIG and IP-10 levels. Overall, corticosteroid (methylprednisolone) use in COVID-19 management influences the immunological molecule and injury biomarker profile in COVID-19 patients.


Assuntos
COVID-19 , Proteína HMGB1 , Humanos , Citocinas , Interleucina-10 , Interleucina-17 , Metilprednisolona/uso terapêutico , Quimiocina CXCL10 , Interleucina-2 , Interleucina-6 , Mioglobina , SARS-CoV-2 , Interleucina-12
5.
Toxins (Basel) ; 15(9)2023 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-37755950

RESUMO

Bothrops snakebite envenomation (SBE) is consider an important health problem in Brazil, where Bothrops atrox is mainly responsible in the Brazilian Amazon. Local effects represent a relevant clinical issue, in which inflammatory signs and symptoms in the bite site represent a potential risk for short and long-term disabilities. Among local complications, secondary infections (SIs) are a common clinical finding during Bothrops atrox SBE and are described by the appearance of signs such as abscess, cellulitis or necrotizing fasciitis in the affected site. However, the influence of SI in the local events is still poorly understood. Therefore, the present study describes for the first time the impact of SBE wound infection on local manifestations and inflammatory response from patients of Bothrops atrox SBE in the Brazilian Amazon. This was an observational study carried out at the Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus (Brazil), involving victims of Bothrops SBE. Clinical and laboratorial data were collected along with blood samples for the quantification of circulating cytokines and chemokines before antivenom administrations (T0) and 24 h (T1), 48 h (T2), 72 h (T3) and 7 days after (T4). From the 94 patients included in this study, 42 presented SI (44.7%) and 52 were without SI (NSI, 55.3%). Patients classified as moderate envenoming presented an increased risk of developing SI (OR = 2.69; CI 95% = 1.08-6.66, p = 0.033), while patients with bites in hands showed a lower risk (OR = 0.20; CI 95% = 0.04-0.96, p = 0.045). During follow-up, SI patients presented a worsening of local temperature along with a sustained profile of edema and pain, while NSI patients showed a tendency to restore and were highlighted in patients where SI was diagnosed at T2. As for laboratorial parameters, leukocytes, erythrocyte sedimentation ratio, fibrinogen and C-reactive protein were found increased in patients with SI and more frequently in patients diagnosed with SI at T3. Higher levels of circulating IL-2, IL-10, IL-6, TNF, INF-γ and CXCL-10 were observed in SI patients along with marked correlations between these mediators and IL-4 and IL-17, showing a plurality in the profile with a mix of Th1/Th2/Th17 response. The present study reports for the first time the synergistic effects of local infection and envenoming on the inflammatory response represented by local manifestations, which reflected on laboratorial parameters and inflammatory mediators and thus help improve the clinical management of SI associated to Bothrops SBE.


Assuntos
Bothrops , Coinfecção , Mordeduras de Serpentes , Humanos , Animais , Mordeduras de Serpentes/complicações , Mordeduras de Serpentes/diagnóstico , Brasil/epidemiologia , Antivenenos/uso terapêutico
6.
Viruses ; 15(4)2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37112998

RESUMO

Numerous studies have focused on inflammation-related markers to understand COVID-19. In this study, we performed a comparative analysis of spike (S) and nucleocapsid (N) protein-specific IgA, total IgG and IgG subclass response in COVID-19 patients and compared this to their disease outcome. We observed that the SARS-CoV-2 infection elicits a robust IgA and IgG response against the N-terminal (N1) and C-terminal (N3) region of the N protein, whereas we failed to detect IgA antibodies and observed a weak IgG response against the disordered linker region (N2) in COVID-19 patients. N and S protein-specific IgG1, IgG2 and IgG3 response was significantly elevated in hospitalized patients with severe disease compared to outpatients with non-severe disease. IgA and total IgG antibody reactivity gradually increased after the first week of symptoms. Magnitude of RBD-ACE2 blocking antibodies identified in a competitive assay and neutralizing antibodies detected by PRNT assay correlated with disease severity. Generally, the IgA and total IgG response between the discharged and deceased COVID-19 patients was similar. However, significant differences in the ratio of IgG subclass antibodies were observed between discharged and deceased patients, especially towards the disordered linker region of the N protein. Overall, SARS-CoV-2 infection is linked to an elevated blood antibody response in severe patients compared to non-severe patients. Monitoring of antigen-specific serological response could be an important tool to accompany disease progression and improve outcomes.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Anticorpos Antivirais , Imunoglobulina G , Imunoglobulina A , Imunoglobulina M , Glicoproteína da Espícula de Coronavírus
7.
Front Public Health ; 11: 1329091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38186717

RESUMO

Background: Central nervous system (CNS) infections are important causes of mortality and morbidity in children, and they are related to severe problems such as hearing loss, neurological sequelae, and death. The objective was to describe clinical and laboratory exam profiles of children who were diagnosed with CNS infections. Methods: We conducted a cross-sectional study based on medical records, which included pediatric patients aged from 3 months to 15 years, with a clinical suspicion of CNS infection between January 2014 to December 2019. The pathogens were confirmed in cerebrospinal fluid (CSF) samples using Gram staining, cell culture, molecular diagnostics (PCR and qPCR), and serology. Results: Out of the 689 enrolled patients, 108 (15.6%) had laboratory-confirmed infections in CSF. The most common bacterial pathogens isolated from the culture were Neisseria meningitidis serogroup C in 19, Streptococcus pneumoniae in 11, and Haemophilus influenzae in seven samples. The viruses identified were Enterovirus, Cytomegalovirus, Varicella-zoster virus, Epstein-Barr virus, and arbovirus. No patient was found to be positive for Herpes simplex virus 1 and 2. Patients with viral infections showed altered levels of consciousness (p = 0.001) when compared to bacterial infections. Conclusion: This study shows the presence of important vaccine-preventable pathogens, and different families of viruses causing CNS infections in the pediatric patients of Manaus.


Assuntos
Infecções do Sistema Nervoso Central , Infecções por Vírus Epstein-Barr , Humanos , Criança , Estudos Transversais , Herpesvirus Humano 4 , Afeto , Infecções do Sistema Nervoso Central/epidemiologia
8.
Rev Soc Bras Med Trop ; 55: e0420, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35946631

RESUMO

BACKGROUND: Malaria is curable. Nonetheless, over 229 million cases of malaria were recorded in 2019, along with 409,000 deaths. Although over 42 million Brazilians are at risk of contracting malaria, 99% percent of all malaria cases in Brazil are located in or around the Amazon rainforest. Despite declining cases and deaths, malaria remains a major public health issue in Brazil. Accurate spatiotemporal prediction of malaria propagation may enable improved resource allocation to support efforts to eradicate the disease. METHODS: In response to calls for novel research on malaria elimination strategies that suit local conditions, in this study, we propose machine learning (ML) and deep learning (DL) models to predict the probability of malaria cases in the state of Amazonas. Using a dataset of approximately 6 million records (January 2003 to December 2018), we applied k-means clustering to group cities based on their similarity of malaria incidence. We evaluated random forest, long-short term memory (LSTM) and dated recurrent unit (GRU) models and compared their performance. RESULTS: The LSTM architecture achieved better performance in clusters with less variability in the number of cases, whereas the GRU presents better results in clusters with high variability. Although Diebold-Mariano testing suggested that both the LSTM and GRU performed comparably, GRU can be trained significantly faster, which could prove advantageous in practice. CONCLUSIONS: All models showed satisfactory accuracy and strong performance in predicting new cases of malaria, and each could serve as a supplemental tool to support regional policies and strategies.


Assuntos
Aprendizado Profundo , Malária , Brasil/epidemiologia , Cidades , Humanos , Incidência , Malária/epidemiologia
9.
Front Microbiol ; 13: 844283, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572676

RESUMO

The severity, disabilities, and lethality caused by the coronavirus 2019 (COVID-19) disease have dumbfounded the entire world on an unprecedented scale. The multifactorial aspect of the infection has generated interest in understanding the clinical history of COVID-19, particularly the classification of severity and early prediction on prognosis. Metabolomics is a powerful tool for identifying metabolite signatures when profiling parasitic, metabolic, and microbial diseases. This study undertook a metabolomic approach to identify potential metabolic signatures to discriminate severe COVID-19 from non-severe COVID-19. The secondary aim was to determine whether the clinical and laboratory data from the severe and non-severe COVID-19 patients were compatible with the metabolomic findings. Metabolomic analysis of samples revealed that 43 metabolites from 9 classes indicated COVID-19 severity: 29 metabolites for non-severe and 14 metabolites for severe disease. The metabolites from porphyrin and purine pathways were significantly elevated in the severe disease group, suggesting that they could be potential prognostic biomarkers. Elevated levels of the cholesteryl ester CE (18:3) in non-severe patients matched the significantly different blood cholesterol components (total cholesterol and HDL, both p < 0.001) that were detected. Pathway analysis identified 8 metabolomic pathways associated with the 43 discriminating metabolites. Metabolomic pathway analysis revealed that COVID-19 affected glycerophospholipid and porphyrin metabolism but significantly affected the glycerophospholipid and linoleic acid metabolism pathways (p = 0.025 and p = 0.035, respectively). Our results indicate that these metabolomics-based markers could have prognostic and diagnostic potential when managing and understanding the evolution of COVID-19.

10.
Microbiol Spectr ; 10(1): e0236621, 2022 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-35196783

RESUMO

The Amazonas was one of the most heavily affected Brazilian states by the COVID-19 epidemic. Despite a large number of infected people, particularly during the second wave associated with the spread of the Variant of Concern (VOC) Gamma (lineage P.1), SARS-CoV-2 continues to circulate in the Amazonas. To understand how SARS-CoV-2 persisted in a human population with a high immunity barrier, we generated 1,188 SARS-CoV-2 whole-genome sequences from individuals diagnosed in the Amazonas state from 1st January to 6th July 2021, of which 38 were vaccine breakthrough infections. Our study reveals a sharp increase in the relative prevalence of Gamma plus (P.1+) variants, designated Pango Lineages P.1.3 to P.1.6, harboring two types of additional Spike changes: deletions in the N-terminal (NTD) domain (particularly Δ144 or Δ141-144) associated with resistance to anti-NTD neutralizing antibodies or mutations at the S1/S2 junction (N679K or P681H) that probably enhance the binding affinity to the furin cleavage site, as suggested by our molecular dynamics simulations. As lineages P.1.4 (S:N679K) and P.1.6 (S:P681H) expanded (Re > 1) from March to July 2021, the lineage P.1 declined (Re < 1) and the median Ct value of SARS-CoV-2 positive cases in Amazonas significantly decreases. Still, we did not find an increased incidence of P.1+ variants among breakthrough cases of fully vaccinated patients (71%) in comparison to unvaccinated individuals (93%). This evidence supports that the ongoing endemic transmission of SARS-CoV-2 in the Amazonas is driven by the spread of new local Gamma/P.1 sublineages that are more transmissible, although not more efficient to evade vaccine-elicited immunity than the parental VOC. Finally, as SARS-CoV-2 continues to spread in human populations with a declining density of susceptible hosts, the risk of selecting more infectious variants or antibody evasion mutations is expected to increase. IMPORTANCE The continuous evolution of SARS-CoV-2 is an expected phenomenon that will continue to happen due to the high number of cases worldwide. The present study analyzed how a Variant of Concern (VOC) could still circulate in a population hardly affected by two COVID-19 waves and with vaccination in progress. Our results showed that the answer behind that was a new generation of Gamma-like viruses, which emerged locally carrying mutations that made it more transmissible and more capable of spreading, partially evading prior immunity triggered by natural infections or vaccines. With thousands of new cases daily, the current pandemics scenario suggests that SARS-CoV-2 will continue to evolve and efforts to reduce the number of infected subjects, including global equitable access to COVID-19 vaccines, are mandatory. Thus, until the end of pandemics, the SARS-CoV-2 genomic surveillance will be an essential tool to better understand the drivers of the viral evolutionary process.


Assuntos
COVID-19/enzimologia , Furina/metabolismo , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Motivos de Aminoácidos , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/transmissão , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Furina/genética , Genômica , Humanos , Mutação , Filogenia , SARS-CoV-2/classificação , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/metabolismo , Glicoproteína da Espícula de Coronavírus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA