Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Phage (New Rochelle) ; 2(1): 7-10, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36148437

RESUMO

Between 2015 and 2019, we hosted an International Phage Course at Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina. The 2-week full-time course was hands-on and included lectures from renowned phage biologists. Participating students were able to meet and discuss with recognized experts from around the world in a familiar setting, facilitating the establishment of scientific collaborations and the expansion of their networks. Eighty-four students from 14 Latin American countries have participated in the course, which included isolation, characterization, genome sequencing, and annotation of novel phages. We have successfully created a coursework that enabled the acquisition of new knowledge and expertise in bacteriophage biology and strengthened ties among Latin American colleagues.

2.
Appl Microbiol Biotechnol ; 100(21): 9201-9215, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27448399

RESUMO

Lactic acid bacteria (LAB) have many applications in food and industrial fermentations. Prophage induction and generation of new virulent phages is a risk for the dairy industry. We identified three complete prophages (PLE1, PLE2, and PLE3) in the genome of the well-studied probiotic strain Lactobacillus casei BL23. All of them have mosaic architectures with homologous sequences to Streptococcus, Lactococcus, Lactobacillus, and Listeria phages or strains. Using a combination of quantitative real-time PCR, genomics, and proteomics, we showed that PLE2 and PLE3 can be induced-but with different kinetics-in the presence of mitomycin C, although PLE1 remains as a prophage. A structural analysis of the distal tail (Dit) and tail associated lysin (Tal) baseplate proteins of these prophages and other L. casei/paracasei phages and prophages provides evidence that carbohydrate-binding modules (CBM) located within these "evolved" proteins may replace receptor binding proteins (RBPs) present in other well-studied LAB phages. The detailed study of prophage induction in this prototype strain in combination with characterization of the proteins involved in host recognition will facilitate the design of new strategies for avoiding phage propagation in the dairy industry.


Assuntos
Lacticaseibacillus casei/genética , Lacticaseibacillus casei/virologia , Prófagos/genética , Prófagos/fisiologia , Ativação Viral , Microbiologia de Alimentos , Mitomicina/metabolismo , Inibidores da Síntese de Ácido Nucleico/metabolismo , Proteínas da Cauda Viral/genética
3.
Appl Microbiol Biotechnol ; 100(19): 8475-84, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27376794

RESUMO

In this work, we studied the role of surface layer (S-layer) proteins in the adaptation of Lactobacillus acidophilus ATCC 4356 to the osmotic stress generated by high salt. The amounts of the predominant and the auxiliary S-layer proteins SlpA and SlpX were strongly influenced by the growth phase and high-salt conditions (0.6 M NaCl). Changes in gene expression were also observed as the mRNAs of the slpA and slpX genes increased related to the growth phase and presence of high salt. A growth stage-dependent modification on the S-layer protein profile in response to NaCl was observed: while in control conditions, the auxiliary SlpX protein represented less than 10 % of the total S-layer protein, in high-salt conditions, it increased to almost 40 % in the stationary phase. The increase in S-layer protein synthesis in the stress condition could be a consequence of or a way to counteract the fragility of the cell wall, since a decrease in the cell wall thickness and envelope components (peptidoglycan layer and lipoteichoic acid content) was observed in L. acidophilus when compared to a non-S-layer-producing species such as Lactobacillus casei. Also, the stationary phase and growth in high-salt medium resulted in increased release of S-layer proteins to the supernatant medium. Overall, these findings suggest that pre-growth in high-salt conditions would result in an advantage for the probiotic nature of L. acidophilus ATCC 4356 as the increased amount and release of the S-layer might be appropriate for its antimicrobial capacity.


Assuntos
Expressão Gênica , Lactobacillus acidophilus/genética , Lactobacillus acidophilus/metabolismo , Glicoproteínas de Membrana/metabolismo , Pressão Osmótica , Lactobacillus acidophilus/efeitos dos fármacos , Cloreto de Sódio/metabolismo
4.
Genome Announc ; 3(1)2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25593259

RESUMO

We present the 1,956,699-bp draft genome sequence of Lactobacillus acidophilus strain ATCC 4356. Comparative genomic analysis revealed 99.96% similarity with L. acidophilus NCFM NC_006814.3 and 99.97% with La-14 NC_021181.2 genomes.

5.
PLoS One ; 9(10): e111114, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25354162

RESUMO

Lysinibacillus sphaericus strains belonging the antigenic group H5a5b produce spores with larvicidal activity against larvae of Culex mosquitoes. C7, a new isolated strain, which presents similar biochemical characteristics and Bin toxins in their spores as the reference strain 2362, was, however, more active against larvae of Culex mosquitoes. The contribution of the surface layer protein (S-layer) to this behaviour was envisaged since this envelope protein has been implicated in the pathogenicity of several bacilli, and we had previously reported its association to spores. Microscopic observation by immunofluorescence detection with anti S-layer antibody in the spores confirms their attachment. S-layers and BinA and BinB toxins formed high molecular weight multimers in spores as shown by SDS-PAGE and western blot detection. Purified S-layer from both L. sphaericus C7 and 2362 strain cultures was by itself toxic against Culex sp larvae, however, that from C7 strain was also toxic against Aedes aegypti. Synergistic effect between purified S-layer and spore-crystal preparations was observed against Culex sp. and Aedes aegypti larvae. This effect was more evident with the C7 strain. In silico analyses of the S-layer sequence suggest the presence of chitin-binding and hemolytic domains. Both biochemical characteristics were detected for both S-layers strains that must justify their contribution to pathogenicity.


Assuntos
Aedes/efeitos dos fármacos , Bacillaceae/química , Culex/efeitos dos fármacos , Glicoproteínas de Membrana/toxicidade , Sequência de Aminoácidos , Animais , Quitina/metabolismo , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/farmacologia , Dados de Sequência Molecular , Ligação Proteica , Multimerização Proteica , Esporos Bacterianos/química
6.
J Microbiol Biotechnol ; 23(1): 15-21, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23314362

RESUMO

We previously observed that Bacillus subtilis spores from sspE mutants presented a lower germination capacity in media containing high salt concentrations (0.9 M NaCl). This deficiency was attributed to the absence of SASP-E (gamma-type small-acid-soluble protein), rich in osmocompatible amino acids released by degradation. Herein we observed that, in addition, this mutant spore presented a reduced capacity to use L-alanine as germinant (L-ala pathway), required longer times to germinate in calcium dipicolinate (Ca(2+)-DPA), but germinated well in asparagine, glucose, fructose, and potassium chloride (AGFK pathway). Moreover, mild sonic treatment of mutant spores partially recovered their germination capacity in L-ala. Spore qualities were also altered, since sporulating colonies from the sspE mutant showed a pale brownish color, a higher adherence to agar plates, and lower autofluorescence, properties related to their spore coat content. Furthermore, biochemical analysis showed a reduced partition in hexadecane and a higher content of Ca(2+)-DPA when compared with its isogenic wild-type control. Coat protein preparations showed a different electrophoretic pattern, in particular when detected with antibodies against CotG and CotE. The complementation with a wild-type sspE gene in a plasmid allowed for recovering the wild-type coat phenotype. This is the first report of a direct involvement of SASP-E in the spore coat assembly during the differentiation program of sporulation.


Assuntos
Bacillus subtilis/fisiologia , Proteínas de Bactérias/metabolismo , Multimerização Proteica , Esporos Bacterianos/fisiologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Proteínas de Bactérias/genética , Deleção de Genes , Teste de Complementação Genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/metabolismo
7.
J Microbiol Biotechnol ; 21(2): 147-53, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21364296

RESUMO

Bacillus species have been involved in metal association as biosorbents, but there is not a clear understanding of this chelating property. In order to evaluate this metal chelating capacity, cultures and spores from Grampositive bacteria of species either able or unable to produce surface layer proteins (S-layers) were analyzed for their capacity of copper biosorption. Only those endowed of S-layers, like Bacillus sphaericus and B. thuringiensis, showed a significant biosorption capacity. This capacity (nearly 50%) was retained after heating of cultures, thus supporting that structural elements of the envelopes are responsible for such activity. Purified Slayers from two Bacillus sphaericus strains had the ability to biosorb copper. Copper biosorption parameters were determined for strain B. sphaericus 2362, and after analyses by means of the Langmuir model, the affinity and capacity were shown to be comparable to other bacterial biosorbents. A competitive effect of Ca2+ and Zn2+, but not of Cd2+, was also observed, thus indicating that other cations may be biosorbed by this protein. Spores that have been shown to be proficient for copper biosorption were further analyzed for the presence of Slayer content. The retention of S-layers by these spores was clearly observed, and after extensive treatment to eliminate the S-layers, the biosorption capacity of these spores was significantly reduced. For the first time, a direct correlation between S-layer protein content and metal biosorption capacity is shown. This capacity is linked to the retention of S-layer proteins attached to Bacillus spores and cells.


Assuntos
Bacillus/metabolismo , Glicoproteínas de Membrana/metabolismo , Metais/metabolismo , Cátions Bivalentes/metabolismo , Quelantes/metabolismo , Ligação Proteica , Esporos Bacterianos/metabolismo
8.
J Microbiol Methods ; 83(2): 164-7, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20807556

RESUMO

We here describe a new method for electroporation of Lactobacillus species, obligately homofermentative and facultatively heterofermentative, based on the cell-wall weakening resulting from growth in high-salt media. For L. casei, optimum transformation efficiency of up to 10(5) transformants per microgram of plasmid DNA was achieved following growth in the presence of 0.9 M NaCl. Plasmids of different sizes and replication origins were also similarly transformed. These competent cells could be used either directly or stored frozen, up to 1 month, for future use, with similar efficiency. This protocol was assayed with different Lactobacillus species: L. delbrueckii subsp. lactis, L. paracasei, L. plantarum and L. acidophilus, and it was found that they were transformed with similar efficiency.


Assuntos
Meios de Cultura/química , Eletroporação/métodos , Lactobacillus/genética , Sais/metabolismo , Criopreservação/métodos , Lactobacillus/crescimento & desenvolvimento , Viabilidade Microbiana , Plasmídeos
9.
Appl Environ Microbiol ; 76(3): 974-7, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19948852

RESUMO

We have previously described a murein hydrolase activity for the surface layer (S-layer) of Lactobacillus acidophilus ATCC 4356. Here we show that, in combination with nisin, this S-layer acts synergistically to inhibit the growth of pathogenic Gram-negative Salmonella enterica and potential pathogenic Gram-positive bacteria, Staphylococcus aureus and Bacillus cereus. In addition, bacteriolytic effects were observed for the Gram-positive species tested. We postulate that the S-layer enhances the access of nisin into the cell membrane by enabling it to cross the cell wall, while nisin provides the sudden ion-nonspecific dissipation of the proton motive force required to enhance the S-layer murein hydrolase activity.


Assuntos
Antibacterianos/farmacologia , Conservantes de Alimentos/farmacologia , Lactobacillus acidophilus/enzimologia , N-Acetil-Muramil-L-Alanina Amidase/farmacologia , Nisina/farmacologia , Bacillus cereus/efeitos dos fármacos , Bacillus cereus/crescimento & desenvolvimento , Membrana Celular/efeitos dos fármacos , Parede Celular/efeitos dos fármacos , Contagem de Colônia Microbiana , Sinergismo Farmacológico , Microbiologia de Alimentos , Genes Bacterianos/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/crescimento & desenvolvimento , Temperatura Alta , Testes de Sensibilidade Microbiana , Permeabilidade , Polilisina/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Tensoativos/farmacologia
10.
Res Microbiol ; 160(2): 117-24, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19063962

RESUMO

The study was focused on the role of the penicillin binding protein PBP4* of Bacillus subtilis during growth in high salinity rich media. Using pbpE-lacZ fusion, we found that transcription of the pbpE gene is induced in stationary phase and by increased salinity. This increase was also corroborated at the translation level for PBP4* by western blot. Furthermore, we showed that a strain harboring gene disruption in the structural gene (pbpE) for the PBP4* endopeptidase resulted in a salt-sensitive phenotype and increased sensitivity to cell envelope active antibiotics (vancomycin, penicillin and bacitracin). Since the pbpE gene seems to be part of a two-gene operon with racX, a racX::pRV300 mutant was obtained. This mutant behaved like the wild-type strain with respect to high salt. Electron microscopy showed that high salt and mutation of pbpE resulted in cell wall defects. Whole cells or purified peptidoglycan from WT cultures grown in high salt medium showed increased autolysis and susceptibility to mutanolysin. We demonstrate through zymogram analysis that PBP4* has murein hydrolyze activity. All these results support the hypothesis that peptidoglycan is modified in response to high salt and that PBP4* contributes to this modification.


Assuntos
Bacillus subtilis/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/fisiologia , Proteínas de Ligação às Penicilinas/fisiologia , Salinidade , D-Ala-D-Ala Carboxipeptidase Tipo Serina/fisiologia , Antibacterianos/farmacologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/ultraestrutura , Bacitracina/farmacologia , Bacteriólise , Parede Celular/efeitos dos fármacos , Parede Celular/ultraestrutura , Microscopia Eletrônica de Transmissão , N-Acetil-Muramil-L-Alanina Amidase/deficiência , Penicilina G/farmacologia , Proteínas de Ligação às Penicilinas/deficiência , Peptidoglicano/metabolismo , D-Ala-D-Ala Carboxipeptidase Tipo Serina/deficiência , Transcrição Gênica , Vancomicina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA