Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Vet Res Commun ; 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38972932

RESUMO

The overuse of antimicrobials in livestock has contributed to the emergence and selection of clinically relevant multidrug-resistant bacteria. In Brazil, there is no conclusive information on the occurrence of Escherichia coli producing extended-spectrum ß-lactamase (ESßL) in cattle breeding, which is an important sector of agribusiness in this country. Herein, we investigated the presence of ESßL-positive E. coli strains in dairy cattle from a commercial farm with routine practice of therapeutic cephalosporins. Ninety-five rectal swab samples were collected from healthy dairy calves and cows under treatment with ceftiofur. Samples were screened for the presence of ESßL producers, and positive isolates were identified by MALDI-TOF, with subsequent screening for genes encoding ESßL variants by PCR and sequencing. The presence of ESßL (CTX-M-15)-producing E. coli was confirmed in calves, and lactating and dry cows. Most ESßL strains with genetic homologies ≥ 90% were grouped into two major PFGE clusters, confirming the suscessful expansion of clonally related lineages in animals from different lactating cycles, on the same property. Four representatives CTX-M-15-positive E. coli strains had their genomes sequenced, belonging to the clonal complex (CC) 23 and sequence type (ST) 90. A phylogeographical landscape of ST90 was performed revealing a global One Health linkage. Our results highlight the intestinal microbiota of dairy cattle as a hotspot for the spread of critical priority ESßL-producing E. coli and demonstrate that ST90 is an international clone genomically adapted to human and animal hosts, which deserve additional investigation to determine its zoonotic potential and impact in food chain.

2.
J Glob Antimicrob Resist ; 36: 135-138, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38072242

RESUMO

BACKGROUND: The global spread of extended-spectrum ß-lactamase (ESßL)-producing Escherichia coli has been considered a One Health issue that demands continuous genomic epidemiology surveillance in humans and non-human hosts. OBJECTIVES: To report the occurrence and genomic data of ESßL-producing E. coli strains isolated from South American llamas inhabiting a protected area with public access in the Andean Highlands of Peru. METHODS: Two ESßL-producing E. coli strains (E. coli L1LB and L2BHI) were identified by MALDI-TOF. Genomic DNAs were extracted and sequenced using the Illumina NextSeq platform. De novo assembly was performed by CLC Genomic Workbench and in silico prediction was accomplished by curated bioinformatics tools. SNP-based phylogenomic analysis was performed using publicly available genomes of global E. coli ST10. RESULTS: Escherichia coli L1LB generated a total of 4 000 11 and L2BHI a total of 4 002 54 paired-end reads of ca.164 × and ca. 157 ×, respectively. Both E. coli strains were assigned to serotype O8:H4, fimH41, and ST10. The blaCTX-M-65 ESßL gene, along with other medically important antimicrobial resistance genes, was predicted. Broad virulomes, including the presence of the astA gene, were confirmed. The phylogenomic analysis revealed that E. coli L1LB and L2BHI strains are closely related to isolates from companion animals and human hosts, as well as environmental strains, previously reported in North America, South America, Africa, and Asia. CONCLUSION: Presence of ESßL-producing E. coli ST10 in South American camelids with historical and cultural importance supports successful expansion of international clones of priority pathogens in natural areas with public access.


Assuntos
Camelídeos Americanos , Infecções por Escherichia coli , Animais , Humanos , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/veterinária , Peru , Antibacterianos/farmacologia , beta-Lactamases/genética , Genômica
3.
Curr Microbiol ; 81(1): 20, 2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38008776

RESUMO

Stenotrophomonas maltophilia is an opportunistic human pathogen associated with nosocomial and community-acquired infections. We have conducted a microbiological and genomic surveillance study of broad-spectrum cephalosporin- and carbapenem-resistant Gram-negative bacteria colonizing wild birds inhabiting the Brazilian Amazonia. Strikingly, two S. maltophilia strains (SM79 and SM115) were identified in Plain-throated antwren (Isleria hauxwelli) passerines affected by Amazonian fragmentation and degradation. Noteworthy, SM79 and SM115 strains belonged to new sequence types (STs) ST474 and ST473, respectively, displaying resistance to broad-spectrum ß-lactams, aminoglycosides and/or fluoroquinolones. In this regard, resistome analysis confirmed efflux pumps (smeABC, smeDEF, emrAB-tolC and macB), blaL1 and blaL2, aph(3')-IIc and aac(6')-Iak, and Smqnr resistance genes. Comparative phylogenomic analysis with publicly available S. maltophilia genomes clustered ST473 and ST474 with human strains, whereas the ST474 was also grouped with S. maltophilia strains isolated from water and poultry samples. In summary, we report two novel sequence types of S. maltophilia colonizing wild Amazonian birds. The presence of opportunistic multidrug-resistant pathogens in wild birds, from remotes areas, could represent an ecological problem since these animals could easily promote long-distance dispersal of medically important antimicrobial-resistant bacteria. Therefore, while our results could provide a baseline for future epidemiological genomic studies, considering the limited information regarding S. maltophilia circulating among wild animals, additional studies are necessary to evaluate the clinical impact and degree of pathogenicity of this human opportunistic pathogen in wild birds.


Assuntos
Infecções por Bactérias Gram-Negativas , Stenotrophomonas maltophilia , Humanos , Animais , Stenotrophomonas maltophilia/genética , Brasil , Animais Selvagens , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Infecções por Bactérias Gram-Negativas/veterinária , Infecções por Bactérias Gram-Negativas/microbiologia
4.
One Health ; 17: 100594, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37448770

RESUMO

The spread of carbapenemase-producing Klebsiella pneumoniae beyond hospital settings is a global critical issue within a public health and One Health perspective. Another worrisome concern is the convergence of virulence and resistance in healthcare-associated lineages of K. pneumoniae leading to unfavorable clinical outcomes. During a surveillance study of WHO critical priority pathogens circulating in an impacted urban river in São Paulo, Brazil, we isolate two hypermucoviscous and multidrug-resistant K. pneumoniae strains (PINH-4250 and PINH-4900) from two different locations near to medical centers. Genomic investigation revealed that both strains belonged to the global high-risk sequence type (ST) ST11, carrying the blaKPC-2 carbapenemase gene, besides other medically important antimicrobial resistance determinants. A broad virulome was predicted and associated with hypervirulent behavior in the Galleria mellonella infection model. Comparative phylogenomic analysis of PINH-4250 and PINH-4900 along to an international collection of publicly available genomes of K. pneumoniae ST11 revealed that both environmental strains were closely related to hospital-associated K. pneumoniae strains recovered from clinical samples between 2006 and 2018, in São Paulo city. Our findings support that healthcare-associated KPC-2-positive K. pneumoniae of ST11 clone has successfully expanded beyond hospital settings. In summary, aquatic environments can become potential sources of international clones of K. pneumoniae displaying carbapenem resistance and hypervirulent behaviors, which is a critical issue within a One Health perspective.

5.
One Health ; 17: 100586, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37415721

RESUMO

Wild birds have emerged as novel reservoirs and potential spreaders of antibiotic-resistant priority pathogens, being proposed as sentinels of anthropogenic activities related to the use of antimicrobial compounds. The aim of this study was to investigate the occurrence and genomic features of extended-spectrum ß-lactamase (ESBL)-producing bacteria in wild birds in South America. In this regard, we have identified two ESBL (CTX-M-55 and CTX-M-65)-positive Escherichia coli (UNB7 and GP188 strains) colonizing Creamy-bellied Thrush (Turdus amaurochalinus) and Variable Hawk (Geranoaetus polyosoma) inhabiting synanthropic and wildlife environments from Brazil and Chile, respectively. Whole-genome sequence (WGS) analysis revealed that E. coli UNB7 and GP188 belonged to the globally disseminated clone ST602, carrying a wide resistome against antibiotics (ß-lactams), heavy metals (arsenic, copper, mercury), disinfectants (quaternary ammonium compounds), and pesticides (glyphosate). Additionally, E. coli UNB7 and GP188 strains harbored virulence genes encoding hemolysin E, type II and III secretion systems, increased serum survival, adhesins and siderophores. SNP-based phylogenomic analysis, using an international genome database, revealed genomic relatedness (19-363 SNP differences) of GP188 with livestock and poultry strains, and genomic relatedness (61-318 differences) of UNB7 with environmental, human and livestock strains (Table S1), whereas phylogeographical analysis confirmed successful expansion of ST602 as a global clone of One Health concern. In summary, our results support that ESBL-producing E. coli ST602 harboring a wide resistome and virulome have begun colonizing wild birds in South America, highlighting a potential new reservoir of critical priority pathogens.

7.
Microb Drug Resist ; 29(7): 296-301, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37155698

RESUMO

The global dissemination of extended-spectrum-ß-lactamase (ESBL)-producing Escherichia coli has been considered a critical issue within a One Health framework. The aim of this study was to perform a genomic investigation of an ESBL-producing E. coli strain belonging to the globally spread sequence type/clonal complex ST90/CC23, isolated from gastrointestinal tract of a dog, in Brazil. Besides CTX-M-15 ESBL, this E. coli isolate carried mutations conferring resistance to human and veterinary fluoroquinolones (GyrA [Ser83Leu, Asp87Asn], ParC [Ser80Ile] and ParE [Ser458Ala]), and resistance determinants to disinfectants and pesticides. Noteworthy, phylogenomic analysis revealed that this multidrug E. coli strain clustered with ST90 lineages isolated from human, dog, and livestock in Brazil. The phylogenetic tree also revealed that this E. coli strain shares a common ancestor with isolates from the United States, Russia, Germany, and China, highlighting the potential global spreading of this clone. In summary, we report genomic data of CTX-M-15-positive E.coli ST90 colonizing a pet. Colonization of companion animals by critical resistant pathogens highlights the need for close monitoring to better understand the epidemiology and genetic factors contributing for successful adaptation of global clones at the human-animal interface.


Assuntos
Infecções por Escherichia coli , Saúde Única , Animais , Cães , Humanos , Escherichia coli , Infecções por Escherichia coli/tratamento farmacológico , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/epidemiologia , Filogenia , Animais de Estimação , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , beta-Lactamases/genética
8.
J Glob Antimicrob Resist ; 33: 256-259, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37098384

RESUMO

OBJECTIVES: The aim of this study was to perform a genomic investigation of a multiple fluoroquinolone-resistant Leclercia adecarboxylata strain isolated from a synanthropic pigeon in São Paulo, Brazil. METHODS: Whole-genome sequencing was performed using an Illumina platform, and in silico deep analyses of the resistome were performed. Comparative phylogenomics was conducted using a global collection of publicly available genomes of L. adecarboxylata strains isolated from human and animal hosts. RESULTS: L. adecarboxylata strain P62P1 displayed resistance to human (norfloxacin, ofloxacin, ciprofloxacin, and levofloxacin) and veterinary (enrofloxacin) fluoroquinolones. This multiple quinolone-resistant profile was associated with mutations in the gyrA (S83I) and parC (S80I) genes and the presence of the qnrS gene within an ISKpn19-orf-qnrS1-ΔIS3-blaLAP-2 module, previously identified in L. adecarboxylata strains isolated from pig feed and faeces in China. Genes associated with arsenic, silver, copper, and mercury resistance were also predicted. Phylogenomic analysis revealed clustering (378-496 single nucleotide polymorphism differences) with two L. adecarboxylata strains isolated from human and fish sources in China and Portugal, respectively. CONCLUSIONS: L. adecarboxylata is a Gram-negative bacterium of the Enterobacterales order and is considered an emergent opportunistic pathogen. Since L. adecarboxylata has adapted to human and animal hosts, genomic surveillance is highly recommended, in order to identify the emergence and spread of resistant lineages and high-risk clones. In this regard, this study provides genomic data that can help clarify the role of synanthropic animals in the dissemination of clinically relevant L. adecarboxylata within a One Health context.


Assuntos
Columbidae , Fluoroquinolonas , Humanos , Animais , Suínos , Fluoroquinolonas/farmacologia , Brasil , DNA Girase/genética , Testes de Sensibilidade Microbiana , Genômica
9.
One Health ; 16: 100476, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36691392

RESUMO

WHO priority pathogens have disseminated beyond hospital settings and are now being detected in urban and wild animals worldwide. In this regard, synanthropic animals such as urban pigeons (Columba livia) and rodents (Rattus rattus, Rattus norvegicus and Mus musculus) are of interest to public health due to their role as reservoirs of pathogens that can cause severe diseases. These animals usually live in highly contaminated environments and have frequent interactions with humans, domestic animals, and food chain, becoming sentinels of anthropogenic activities. In this study, we report genomic data of Escherichia coli strains selected for ceftriaxone and ciprofloxacin resistance, isolated from pigeons and black rats. Genomic analysis revealed the occurrence of international clones belonging to ST10, ST155, ST224 and ST457, carrying a broad resistome to beta-lactams, aminoglycosides, trimethoprim/sulfamethoxazole, fluoroquinolones, tetracyclines and/or phenicols. SNP-based phylogenomic investigation confirmed clonal relatedness with high-risk lineages circulating at the human-animal-environmental interface globally. Our results confirm the dissemination of WHO priority CTX-M-positive E. coli in urban rodents and pigeons in Brazil, highlighting potential of these animals as infection sources and hotspot for dissemination of clinically relevant pathogens and their resistance genes, which is a critical issue within a One Health perspective.

10.
Sci Rep ; 12(1): 9354, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35672430

RESUMO

During a microbiological and genomic surveillance study conducted to investigate the molecular epidemiology of extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli from community-acquired urinary tract infections (UTI) and commercial meat samples, in a Brazilian city with a high occurrence of infections by ESBL-producing bacteria, we have identified the presence of CTX-M (-2, -14, -15, -24, -27 and -55)-producing E. coli of international clones ST38, ST117, ST131 and ST354. The ST131 was more prevalent in human samples, and worryingly the high-risk ST131-C1-M27 was identified in human infections for the first time. We also detected CTX-M-55-producing E. coli ST117 from meat samples (i.e., chicken and pork) and human infections. Moreover, the clinically relevant CTX-M-24-positive E. coli ST354 clone was detected for the first time in human samples. In summary, our results highlight a potential of commercialized meat as a reservoir of high-priority E. coli lineages in the community, whereas the identification of E. coli ST131-C1-M27 indicates that novel pandemic clones have emerged in Brazil, constituting a public health issue.


Assuntos
Infecções Comunitárias Adquiridas , Infecções por Escherichia coli , Antibacterianos , Brasil/epidemiologia , Células Clonais , Infecções Comunitárias Adquiridas/epidemiologia , Infecções Comunitárias Adquiridas/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Genômica , Humanos , Carne , beta-Lactamases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA