Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
PeerJ ; 11: e15235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37434868

RESUMO

Background: The Andean condor (Vultur gryphus) is the largest scavenger in South America. This predatory bird plays a crucial role in their ecological niche by removing carcasses. We report the first metagenomic analysis of the Andean condor gut microbiome. Methods: This work analyzed shotgun metagenomics data from a mixture of fifteen captive Chilean Andean condors. To filter eukaryote contamination, we employed BWA-MEM v0.7. Taxonomy assignment was performed using Kraken2 and MetaPhlAn v2.0 and all filtered reads were assembled using IDBA-UD v1.1.3. The two most abundant species were used to perform a genome reference-guided assembly using MetaCompass. Finally, we performed a gene prediction using Prodigal and each gene predicted was functionally annotated. InterproScan v5.31-70.0 was additionally used to detect homology based on protein domains and KEGG mapper software for reconstructing metabolic pathways. Results: Our results demonstrate concordance with the other gut microbiome data from New World vultures. In the Andean condor, Firmicutes was the most abundant phylum present, with Clostridium perfringens, a potentially pathogenic bacterium for other animals, as dominating species in the gut microbiome. We assembled all reads corresponding to the top two species found in the condor gut microbiome, finding between 94% to 98% of completeness for Clostridium perfringens and Plesiomonas shigelloides, respectively. Our work highlights the ability of the Andean condor to act as an environmental reservoir and potential vector for critical priority pathogens which contain relevant genetic elements. Among these genetic elements, we found 71 antimicrobial resistance genes and 1,786 virulence factors that we associated with several adaptation processes.


Assuntos
Falconiformes , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , Metagenômica , Aclimatação , Chile , Clostridium perfringens
2.
J Alzheimers Dis ; 95(1): 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37482994

RESUMO

BACKGROUND: Semantic and Phonological fluency (SF and PF) are routinely evaluated in patients with Alzheimer's disease (AD). There are disagreements in the literature regarding which fluency task is more affected while developing AD. Most studies focus on SF assessment, given its connection with the temporoparietal amnesic system. PF is less reported, it is related to working memory, which is also impaired in probable and diagnosed AD. Differentiating between performance on these tasks might be informative in early AD diagnosis, providing an accurate linguistic profile. OBJECTIVE: Compare SF and PF performance in healthy volunteers, volunteers with probable AD, and patients with AD diagnosis, considering the heterogeneity of age, gender, and educational level variables. METHODS: A total of 8 studies were included for meta-analysis, reaching a sample size of 1,270 individuals (568 patients diagnosed with AD, 340 with probable AD diagnosis, and 362 healthy volunteers). RESULTS: The three groups consistently performed better on SF than PF. When progressing to a diagnosis of AD, we observed a significant difference in SF and PF performance across our 3 groups of interest (p = 0.04). The age variable explained a proportion of this difference in task performance across the groups, and as age increases, both tasks equally worsen. CONCLUSION: The performance of SF and PF might play a differential role in early AD diagnosis. These tasks rely on partially different neural bases of language processing. They are thus worth exploring independently in diagnosing normal aging and its transition to pathological stages, including probable and diagnosed AD.


Assuntos
Doença de Alzheimer , Semântica , Humanos , Doença de Alzheimer/diagnóstico , Comportamento Verbal , Testes Neuropsicológicos , Linguística
3.
Biol Psychiatry ; 92(1): 54-67, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35491275

RESUMO

BACKGROUND: The predictive coding theory of allostatic-interoceptive load states that brain networks mediating autonomic regulation and interoceptive-exteroceptive balance regulate the internal milieu to anticipate future needs and environmental demands. These functions seem to be distinctly compromised in behavioral variant frontotemporal dementia (bvFTD), including alterations of the allostatic-interoceptive network (AIN). Here, we hypothesize that bvFTD is typified by an allostatic-interoceptive overload. METHODS: We assessed resting-state heartbeat evoked potential (rsHEP) modulation as well as its behavioral and multimodal neuroimaging correlates in patients with bvFTD relative to healthy control subjects and patients with Alzheimer's disease (N = 94). We measured 1) resting-state electroencephalography (to assess the rsHEP, prompted by visceral inputs and modulated by internal body sensing), 2) associations between rsHEP and its neural generators (source location), 3) cognitive disturbances (cognitive state, executive functions, facial emotion recognition), 4) brain atrophy, and 5) resting-state functional magnetic resonance imaging functional connectivity (AIN vs. control networks). RESULTS: Relative to healthy control subjects and patients with Alzheimer's disease, patients with bvFTD presented more negative rsHEP amplitudes with sources in critical hubs of the AIN (insula, amygdala, somatosensory cortex, hippocampus, anterior cingulate cortex). This exacerbated rsHEP modulation selectively predicted the patients' cognitive profile (including cognitive decline, executive dysfunction, and emotional impairments). In addition, increased rsHEP modulation in bvFTD was associated with decreased brain volume and connectivity of the AIN. Machine learning results confirmed AIN specificity in predicting the bvFTD group. CONCLUSIONS: Altogether, these results suggest that bvFTD may be characterized by an allostatic-interoceptive overload manifested in ongoing electrophysiological markers, brain atrophy, functional networks, and cognition.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doença de Alzheimer/patologia , Atrofia/patologia , Encéfalo , Mapeamento Encefálico , Demência Frontotemporal/diagnóstico por imagem , Demência Frontotemporal/patologia , Humanos , Imageamento por Ressonância Magnética
4.
Animals (Basel) ; 12(8)2022 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-35454190

RESUMO

The ocular microbiome in horses is poorly described compared to other species, and most of the information available in the literature is based on traditional techniques, which has limited the depth of the knowledge on the subject. The objective of this study was to characterize and predict the metabolic pathways of the ocular microbiome of a group of healthy horses. Conjunctival swabs were obtained from both eyes of 14 horses, and DNA extraction was performed from the swabs, followed by next generation sequencing and bioinformatics analyses employing DADA2 and PICRUSt2. A total of 17 phyla were identified, of which Pseudomonadota (Proteobacteria) was the most abundant (59.88%), followed by Actinomycetota (Actinobacteria) (22.44%) and Bacteroidota (Bacteroidetes) (16.39%), totaling an average of 98.72% of the communities. Similarly, of the 278 genera identified, Massilia, Pedobacter, Pseudomonas, Sphingomonas, Suttonella and Verticia were present in more than 5% of the samples analyzed. Both Actinobacteria and Bacteroides showed great heterogeneity within the samples. The most abundant inferred metabolic functions were related to vital functions for bacteria such as aerobic respiration, amino acid, and lipid biosynthesis.

5.
PeerJ ; 10: e12695, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35190784

RESUMO

Obesity is a multifactorial nutritional disorder highly prevalent in dogs, observed in developed and developing countries. It is estimated that over 40% of the canine population suffers from obesity, which manifests in an increased risk of chronic osteoarticular, metabolic, and cardiovascular diseases. The intestinal microbiome of obese animals shows increases in the abundance of certain members capable of extracting energy from complex polysaccharides. The objective of this study was to compare the composition and predicted function of the intestinal microbiome of Chilean obese and normal weight adult dogs. Twenty clinically healthy dogs were classified according to their body condition score (BCS) as obese (n = 10) or normal weight (n = 10). DNA was extracted from stool samples, followed by next-generation sequencing of the 16S rRNA V3-V4 region and bioinformatics analysis targeting microbiome composition and function. Significant differences were observed between these groups at the phylum level, with anincrease in Firmicutes and a decrease in Bacteroidetes in obese dogs. Microbiome compositions of these animals correlated with their BCS, and obese dogs showed enrichment in pathways related to transport, chemotaxis, and flagellar assembly. These results highlight the differences in the gut microbiome between normal weight and obese dogs and prompt further research to improve animal health by modulating the gut microbiome.


Assuntos
Microbioma Gastrointestinal , Microbiota , Cães , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Fezes , Obesidade/veterinária
6.
Vet Sci ; 9(2)2022 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-35202332

RESUMO

The close contact between people and their pets has generated the exchange of skin microbiota, accompanied by bacteria that present resistance to antibiotics. Staphylococcus spp., opportunistic pathogens present in the skin and mucosa of mammals, have had their importance recognized in human and veterinary medicine. The objectives of this study were to identify Staphylococcus spp. present in isolates from the nostrils of healthy humans, dogs and cats as well as to determine their phenotype of resistance to methicillin. Strain identification was performed by MALDI-TOF mass spectrometry and antimicrobial susceptibility was determined using a disk diffusion assay for 12 antibiotics. Sixty humans (veterinary and technicians), sixty dogs and sixty cats were sampled; of them, 61.6%, 56.6% and 46.6%, respectively, carried Staphylococcus spp. in their nostrils, and only two people carried two different species of Staphylococcus in the only anatomical site sampled. A methicillin-resistant phenotype was present in 48.7% of the humans, 26.5% of the dogs and 57.1% of the cats, and sampled. These results demonstrate the presence of Staphylococcus spp. strains resistant to methicillin in personnel who work in contact with animals, as well as in dogs and cats that entered the same hospital or veterinary clinic, which alerts us to the potential transfer of these strains to or between people, dogs and/or cats.

7.
Open Vet J ; 12(6): 797-805, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36650865

RESUMO

Background: Culture-independent techniques have made it possible to expand the knowledge about the composition of bacterial communities present in the healthy uterus and their role in health and disease, mainly in humans. However, in animals like mares, there is a dearth of information regarding this area. Aim: To narrow this knowledge gap, the objective of this study was to identify and characterize the composition and function of the uterine microbiome of a group of Chilean purebred mares (CPM), an equine breed with the oldest genealogical record in South America and an economical important reproductive industry. Methods: From uterine biopsy samples obtained during estrus, DNA extraction and targeted sequencing were performed to investigate the bacterial diversity and its probable metabolic function. Results: CPM biopsy samples were characterized by having a varied microbial composition, where the four most relatively abundant phyla were Proteobacteria (69.6%), Firmicutes (21.1%), Bacteroidetes (7.8%), and Actinobacteria (1.06%); which made up 99.6% of the total identified phyla. In contrast, Actinobacteria and Fusobacteria were the phyla not identified in all samples. Of a total of 59 genera identified across all samples, Staphylococcus was the most abundant genus with an average relative abundance of 18.88%, followed by Pseudomonas (17.9%), Escherichia/Shigella (10.42%), and Klebsiella (9.92%). Conclusion: These findings contribute to the knowledge of microbes' presence in the uterus, while future studies are required to demonstrate the role of these microorganisms in health and disease.


Assuntos
Actinobacteria , Microbiota , Útero , Animais , Feminino , Humanos , Actinobacteria/genética , Bactérias/genética , Firmicutes/genética , Cavalos , Redes e Vias Metabólicas , Microbiota/genética , Útero/microbiologia
8.
Vet Sci ; 8(12)2021 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-34941818

RESUMO

The oral microbiome in dogs is a complex community. Under some circumstances, it contributes to periodontal disease, a prevalent inflammatory disease characterized by a complex interaction between oral microbes and the immune system. Porphyromonas and Tannerella spp. are usually dominant in this disease. How the oral microbiome community is altered in periodontal disease, especially sub-dominant microbial populations is unclear. Moreover, how microbiome functions are altered in this disease has not been studied. In this study, we compared the composition and the predicted functions of the microbiome of the cavity of healthy dogs to those with from periodontal disease. The microbiome of both groups clustered separately, indicating important differences. Periodontal disease resulted in a significant increase in Bacteroidetes and reductions in Actinobacteria and Proteobacteria. Porphyromonas abundance increased 2.7 times in periodontal disease, accompanied by increases in Bacteroides and Fusobacterium. It was predicted that aerobic respiratory processes are decreased in periodontal disease. Enrichment in fermentative processes and anaerobic glycolysis were suggestive of an anaerobic environment, also characterized by higher lipopolysaccharide biosynthesis. This study contributes to a better understanding of how periodontal disease modifies the oral microbiome and makes a prediction of the metabolic pathways that contribute to the inflammatory process observed in periodontal disease.

9.
Interface Focus ; 11(4): 20200076, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34123358

RESUMO

The regulation of gene expression is a key factor in the development and maintenance of life in all organisms. Even so, little is known at whole genome scale for most genes and contexts. We propose a method, Tool for Weighted Epigenomic Networks in Drosophila melanogaster (Fly T-WEoN), to generate context-specific gene regulatory networks starting from a reference network that contains all known gene regulations in the fly. Unlikely regulations are removed by applying a series of knowledge-based filters. Each of these filters is implemented as an independent module that considers a type of experimental evidence, including DNA methylation, chromatin accessibility, histone modifications and gene expression. Fly T-WEoN is based on heuristic rules that reflect current knowledge on gene regulation in D. melanogaster obtained from the literature. Experimental data files can be generated with several standard procedures and used solely when and if available. Fly T-WEoN is available as a Cytoscape application that permits integration with other tools and facilitates downstream network analysis. In this work, we first demonstrate the reliability of our method to then provide a relevant application case of our tool: early development of D. melanogaster. Fly T-WEoN together with its step-by-step guide is available at https://weon.readthedocs.io.

10.
Bioinformatics ; 36(22-23): 5473-5480, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33367504

RESUMO

MOTIVATION: Cells are complex systems composed of hundreds of genes whose products interact to produce elaborated behaviors. To control such behaviors, cells rely on transcription factors to regulate gene expression, and gene regulatory networks (GRNs) are employed to describe and understand such behavior. However, GRNs are static models, and dynamic models are difficult to obtain due to their size, complexity, stochastic dynamics and interactions with other cell processes. RESULTS: We developed Atlas, a Python software that converts genome graphs and gene regulatory, interaction and metabolic networks into dynamic models. The software employs these biological networks to write rule-based models for the PySB framework. The underlying method is a divide-and-conquer strategy to obtain sub-models and combine them later into an ensemble model. To exemplify the utility of Atlas, we used networks of varying size and complexity of Escherichia coli and evaluated in silico modifications, such as gene knockouts and the insertion of promoters and terminators. Moreover, the methodology could be applied to the dynamic modeling of natural and synthetic networks of any bacteria. AVAILABILITY AND IMPLEMENTATION: Code, models and tutorials are available online (https://github.com/networkbiolab/atlas). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA