Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Appl Oral Sci ; 31: e20230146, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37729259

RESUMO

OBJECTIVE: Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. METHODOLOGY: Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. RESULTS: CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. CONCLUSION: This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.


Assuntos
Quitosana , Cárie Dentária , Óleos Voláteis , Pré-Escolar , Humanos , Óleos Voláteis/farmacologia , Candida albicans , Streptococcus mutans , Quitosana/farmacologia , Cárie Dentária/prevenção & controle , Biofilmes
2.
Med Mycol ; 61(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37553154

RESUMO

The limited therapeutic options for fungal infections and the increased incidence of fungal strains resistant to antifungal drugs, especially Candida spp., require the development of new antifungal drugs and strategies. Histone deacetylase inhibitors (HDACi), like vorinostat, have been studied in cancer treatment and have antifungal effects, acting alone or synergistically with classical antifungals. Here we investigated the antifungal activity of two novel sustainable HDACi (LDT compounds) based on vorinostat structure. Molecular docking simulation studies reveal that LDT compounds can bind to Class-I HDACs of Candida albicans, C. tropicalis, and Cryptococcus neoformans, which showed similar binding mode to vorinostat. LDT compounds showed moderate activity when tested alone against fungi but act synergistically with antifungal azoles against Candida spp. They reduced biofilm formation by more than 50% in C. albicans (4 µg/mL), with the main action in fungal filamentation. Cytotoxicity of the LDT compounds against RAW264.7 cells was evaluated and LDT536 demonstrated cytotoxicity only at the concentration of 200 µmol/L, while LDT537 showed IC50 values of 29.12 µmol/L. Our data indicated that these sustainable and inexpensive HDACi have potential antifungal and antibiofilm activities, with better results than vorinostat, although further studies are necessary to better understand the mechanism against fungal cells.


Fungal infections are neglected diseases that affect more than a billion people worldwide. Some histone deacetylase inhibitors can act against fungal cells. Our data reveal that HDACi LDT536 and LDT537 have potential antibiofilm and antifungal activities.

3.
Fitoterapia ; 165: 105424, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36603699

RESUMO

Five unusual kaurane diterpenes, designated as bezerraditerpenes A-E (1-5), along with six known ones (6-11), were isolated from the hexane extract of the stems of Erythroxylum bezerrae. Their structures were elucidated based on the interpretation of the NMR spectroscopy, mass spectrometry, and X-ray diffraction analysis. The anti-inflammatory potential of the diterpenes 1-11 was screened through cellular viability and lipopolysaccharide (LPS)-induced nitric oxide (NO) production on murine macrophage-like cells RAW 264.7. Diterpene 6 (cauren-6ß-ol) showed potent cytotoxicity and increased ability to inhibit NO production. Diterpenes 1 (bezerraditerpene A), 2 (bezerraditerpene B), and 8 (ent-kaur-16-ene-3ß,15ß-diol) exhibited the same significant anti-inflammatory activity with NO CI50 inhibition (3.21-3.76 µM) without cytotoxicity, in addition to decreasing the levels of pro-inflammatory cytokines TNF-α and IL-6 in LPS-induced RAW264.7 cells.


Assuntos
Diterpenos do Tipo Caurano , Diterpenos , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Diterpenos/farmacologia , Diterpenos do Tipo Caurano/farmacologia , Diterpenos do Tipo Caurano/química , Lipopolissacarídeos/farmacologia , Estrutura Molecular , Óxido Nítrico , Erythroxylaceae/química
4.
J. appl. oral sci ; 31: e20230146, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1514408

RESUMO

Abstract Oral candidiasis is a common fungal infection that affects the oral mucosa, and happens when Candida albicans interacts with bacteria in the oral microbiota, such as Streptococcus mutans, causing severe early childhood caries. C. albicans and S. mutans mixed biofilms are challenging to treat with conventional antimicrobial therapies, thus, new anti-infective drugs are required. Objective This study aimed to test a drug delivery system based on chitosan microparticles loaded with geranium and lemongrass essential oils to inhibit C. albicans and S. mutans mixed biofilms. Methodology Chitosan microparticles loaded with essential oils (CM-EOs) were obtained by spray-drying. Susceptibility of planktonic were performed according CLSI at 4 to 2,048 µg/mL. Mixed biofilms were incubated at 37ºC for 48 h and exposed to CM-EOs at 256 to 4,096 µg/mL. The antimicrobial effect was evaluated using the MTT assay, with biofilm architectural changes analyzed by scanning electron microscopy. RAW 264.7 cell was used to evaluate compound cytotoxicity. Results CM-EOs had better planktonic activity against C. albicans than S. mutans. All samples reduced the metabolic activity of mixed C. albicans and S. mutans biofilms, with encapsulated oils showing better activity than raw chitosan or oils. The microparticles reduced the biofilm on the slides. The essential oils showed cytotoxic effects against RAW 264.7 cells, but encapsulation into chitosan microparticles decreased their toxicity. Conclusion This study demonstrates that chitosan loaded with essential oils may provide an alternative method for treating diseases caused by C. albicans and S. mutans mixed biofilm, such as dental caries.

5.
Phytochemistry ; 203: 113338, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35948140

RESUMO

Withajardins, uncommon modified withanolide-type steroids, have been isolated exclusively from plants of the Solanaceae family so far. Two undescribed withajardins and the known tuboanosigenin were isolated from the hexane/EtOAc 1:1 extract from Athenaea velutina leaves. Their structures were established by an extensive analysis of 1D and 2D-NMR and HRMS data. The absolute configuration was determined by X-ray diffraction (withajardin L and tuboanosigenin) and circular dichroism (CD) analyses (withajardin M). The anti-inflammatory activity of compounds was evaluated through the inhibition of the lipopolysaccharide (LPS)-induced nitric oxide (NO), TNF-α, and IL-6 release in RAW264.7 cells. The cell viability effects to RAW 264.7 cells showed IC50 values of 74.4-354.4 µM. The compounds attenuated LPS-induced release of NO and decreased pro-inflammatory cytokines TNF-α and IL-6 in RAW264.7 cells.


Assuntos
Anti-Inflamatórios , Extratos Vegetais , Solanaceae , Vitanolídeos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Interleucina-6 , Lipopolissacarídeos , Camundongos , Óxido Nítrico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Células RAW 264.7 , Solanaceae/química , Fator de Necrose Tumoral alfa , Vitanolídeos/química , Vitanolídeos/farmacologia
6.
Biofouling ; 38(3): 286-297, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35450473

RESUMO

This study aimed to evaluate the effect of proteinase K on mature biofilms of dermatophytes, by assays of metabolic activity and biomass. In addition, the proteinase K-terbinafine and proteinase K-griseofulvin interactions against these biofilms were investigated by the checkerboard assay and scanning electron and confocal microscopy. The biofilms exposed to 32 µg ml-1 of proteinase K had lower metabolic activity and biomass, by 39% and 38%, respectively. Drug interactions were synergistic, with proteinase K reducing the minimum inhibitory concentration of antifungals against dermatophyte biofilms at a concentration of 32 µg ml-1 combined with 128-256 µg ml-1 of terbinafine and griseofulvin. Microscopic images showed a reduction in biofilms exposed to proteinase K, proteinase K-terbinafine and proteinase K-griseofulvin combinations. These findings demonstrate that proteinase K has activity against biofilms of dermatophytes, and the interactions of proteinase K with terbinafine and griseofulvin improve the activity of drugs against mature dermatophyte biofilms.


Assuntos
Antifúngicos , Arthrodermataceae , Antifúngicos/farmacologia , Biofilmes , Endopeptidase K/farmacologia , Griseofulvina/farmacologia , Testes de Sensibilidade Microbiana , Terbinafina/farmacologia
7.
Acta Parasitol ; 65(3): 686-695, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32347532

RESUMO

BACKGROUND: Leishmania braziliensis is prevalent in Latin American countries, including Brazil. It causes cutaneous and mucocutaneous leishmaniasis, leading to high morbidity, and has a low cure rate. Treatment is based on pentavalent antimonials; nonetheless, there are problems related to high toxicity, high cost, and parasitic resistance. Discovery of new leishmanicidal drugs without these limitations and that stimulate the cellular immune response is necessary. PURPOSE: The present work evaluates whether Astronium fraxinifolium Schott exerts leishmanicidal activity against L. braziliensis by providing a classically polarized profile in infected macrophages. METHODS: For the evaluation of the A. fraxinifolium Schott leishmanicidal activity, amastigote cell death was demonstrated in infected RAW 267.4 macrophages treated with an ethanolic extract from the plant sapwood (EEAF). For the evaluation of the EEAF capacity in providing a classically polarized profile in infected macrophages, the following analyses were done: detection of LAMP-1 protein by the baculovirus technology, measurement of superoxide anion by the NBT testing, quantification of TNF-α, IL-12p40, IL-10, IL-4, and TGF-ß by sandwich-type enzyme immune assays, and iNOS and COX-2 expression by RT-PCR technique. RESULTS: The EEAF significantly reduced amastigote counts inside the cells. Vacuoles were visualized in infected and treated cells before and after May-Grünwald-Giemsa staining. A strong LAMP-1 protein fluorescence revealed phagosome maturation in infected cells treated with the EEAF. No production of superoxide was visualized in infected cells treated with the plant material. Nonetheless, high levels of TNF-α, IL-12p40, and IL-10 were found in cell supernatants, but reduced levels of TGF-ß and no IL-4 production. We identified augmented mRNA expression for COX-2, but no expression of iNOS mRNA. CONCLUSION: Our results demonstrated that A. fraxinifolium induced a classically polarized profile in infected macrophages but also provided a less harmful environment by stimulating the production of certain anti-inflammatory mediators, such as IL-10.


Assuntos
Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Extratos Vegetais/farmacologia , Anacardiaceae/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Citocinas/análise , Citocinas/imunologia , Interleucina-10/análise , Macrófagos/parasitologia , Camundongos , Células RAW 264.7
8.
J Inorg Biochem ; 206: 111048, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32151873

RESUMO

Inflammation is a physiological process triggered in response to tissue damage, and involves events related to cell recruitment, cytokines release and reactive oxygen species (ROS) production. Failing to control the process duration lead to chronification and may be associated with the development of various pathologies, including autoimmune diseases and cancer. Considering the pharmacological potential of metal-based compounds, two new ruthenium complexes were synthesized: cis-[Ru(NO2)(bpy)2(5NIM)]PF6 (1) and cis-[RuCl(bpy)2(MTZ)]PF6 (2), where bpy = 2,2'-bipyridine, 5NIM = 5-nitroimidazole and MTZ = metronidazole. Both products were characterized by spectroscopic techniques, followed by Density Functional Theory (DFT) calculations in order to support experimental findings. Afterwards, their in vitro cytotoxic, antioxidant and anti-inflammatory activities were investigated. Compounds 1 and 2 presented expressive in vitro antioxidant activity, reducing lipid peroxidation and decreasing intracellular ROS levels with comparable effectiveness to the standard steroidal drug dexamethasone or α-tocopherol. These complexes showed no noticeable cytotoxicity on the tested cancer cell lines. Bactericidal assay against metronidazole-resistant Helicobacter pylori, a microorganism able to disrupt oxidative balance, unraveled compound 1 moderate activity over that strain. Besides this, it was able to inhibit interleukin-6 (IL-6) and tumor necrosis factor-α (TNF- α) production as well as interleukin-1ß (IL-1ß) and cyclooxygenase-2 (COX-2) expression in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. This latter activity is remarkable, which has not been reported for other ruthenium-based complexes. Altogether, these results suggest cis-[Ru(NO2)(bpy)2(5NIM)]PF6 complex has potential pharmacological application as an anti-inflammatory agent that deserve further biological investigation.


Assuntos
Antibacterianos/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Imidazóis/química , Rutênio/química , Células A549 , Animais , Antibacterianos/química , Anti-Inflamatórios/química , Antineoplásicos/química , Antioxidantes/química , Bactérias/efeitos dos fármacos , Proliferação de Células , Complexos de Coordenação/química , Humanos , Peroxidação de Lipídeos , Células MCF-7 , Camundongos , Estrutura Molecular , Células RAW 264.7 , Superóxidos/metabolismo
9.
Pathophysiology ; 26(3-4): 349-359, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31668916

RESUMO

Arthur de Carvalho Drops® (ACD) is a traditional Brazilian herbal medicine used to treat functional gastrointestinal disorders (FGIDs). ACD is a formulation of herbal extracts from Matricaria recutita (chamomile), Foeniculum vulgare (fennel) and Gentiana lutea L. (gentian). Considering the popular use for FGIDs, the aim of this work was to investigate the ACD effect on gastric and intestinal parameters with emphasis in a mechanistic approach using isolated duodenal preparations of rodents. Analytical method was developed and validated for quantify three actives principles/markers (Apigenin-7-glucoside, gentiopicroside and anethole) in ACD. The treatment with ACD significantly reduced the emetogenic stimuli induced by cisplatin in rats, showed a laxative effect, reduced the bethanechol-enhanced gastrointestinal transit and completely reversed the contraction induced by carbachol in rat duodenum. However, ACD did not alter the secretory gastric volume or total gastric acidity. The ACD affect the contractions of duodenal smooth muscle mediated by Ca2+ channels and it is also able to inhibit the contractile response mediated by the release from its intracellular store. Furthermore, the relaxant effects of ACD appear independent of the nitric oxide pathway in rat duodenum. These results suggest that ACD could be beneficial for the treatment of disorders of the gastrointestinal tract.

10.
J Evid Based Integr Med ; 24: 2515690X19865166, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31394920

RESUMO

Wound healing involves the interaction of blood cells, proteins, proteases, growth factors, and extracellular matrix components. Inflammation is one of the first events occurring during this process. Previously, we showed that the N-Methyl-(2S,4R)-trans-4-Hydroxy-L-Proline (NMP) from Sideroxylon obtusifolium leaves (a Brazilian medicinal species) presents an anti-inflammatory action. Considering inflammation as an important event in the wound healing process, the objectives were to investigate the topical effects of the NMP gel on a mice wound-induced model. Male Swiss mice were divided into 4 groups: Sham (surgical procedure only), Control (gel-base treated), and 3% or 10% NMP gel-treated groups. Measurements of wound areas and microscopic analyses (HE [hematoxylin-eosin] and PSR [picrosirius red] stainings) were carried out, at the 7th and 12th, days after the wound induction. Furthermore, immunohistochemical assays for iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) and biochemical measurements for TBARS (thiobarbituric acid reactive substances), GSH (glutathione), and myeloperoxidase (MPO) were also performed, at the second day after the wound induction. The work showed that NMP decreases the wound areas, after topical application, relatively to the Sham and Control groups. In addition, microscopic alterations were reduced and collagen deposition was increased, at the 7th and 12th days, in the 10% NMP group. While iNOS and COX-2 immunostainings and GSH contents increased, in relation to the Sham and Control groups, TBARS and MPO decreased. Altogether, the results showed NMP to improve the wound healing process, by upregulating iNOS and COX-2 activities, reducing lipid peroxidation and MPO activity, and increasing GSH contents. In addition, NMP certainly contributes to the increased collagen deposition. These data may stimulate translational studies dealing with the possible use of NMP from Sideroxylon obtusifolium or from other sources for the management of wound healing.


Assuntos
Anti-Inflamatórios/administração & dosagem , Antioxidantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Prolina/administração & dosagem , Sapotaceae/química , Cicatrização/efeitos dos fármacos , Ferimentos e Lesões/tratamento farmacológico , Animais , Anti-Inflamatórios/química , Antioxidantes/química , Colágeno/genética , Colágeno/imunologia , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/imunologia , Glutationa/imunologia , Humanos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/imunologia , Peroxidase/genética , Peroxidase/imunologia , Extratos Vegetais/química , Prolina/análogos & derivados , Ferimentos e Lesões/genética , Ferimentos e Lesões/imunologia , Ferimentos e Lesões/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA