Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Parasitology, v. 146, n. 4, p. 543-552, abr. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2708

RESUMO

Trypanosoma cruzi, the causative agent of Chagas disease, is a public health concern in Latin America. Epigenetic events, such as histone acetylation, affect DNA topology, replication and gene expression. Histone deacetylases (HDACs) are involved in chromatin compaction and post-translational modifications of cytoplasmic proteins, such as tubulin. HDAC inhibitors, like trichostatin A (TSA), inhibit tumour cell proliferation and promotes ultrastructural modifications. In the present study, TSA effects on cell proliferation, viability, cell cycle and ultrastructure were evaluated, as well as on histone acetylation and tubulin expression of the T. cruzi epimastigote form. Protozoa proliferation and viability were reduced after treatment with TSA. Quantitative proteomic analyses revealed an increase in histone acetylation after 72 h of TSA treatment. Surprisingly, results obtained by different microscopy methodologies indicate that TSA does not affect chromatin compaction, but alters microtubule cytoskeleton dynamics and impair kDNA segregation, generating polynucleated cells with atypical morphology. Confocal fluorescence microscopy and flow cytometry assays indicated that treated cell microtubules were more intensely acetylated. Increases in tubulin acetylation may be directly related to the higher number of parasites in the G2/M phase after TSA treatment. Taken together, these results suggest that deacetylase inhibitors represent excellent tools for understanding trypanosomatid cell biology.

2.
Acta Trop ; 170: 149-160, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28185826

RESUMO

The Trypanosomatidae family includes pathogenic species of medical and veterinary interest. Chagas disease is endemic in Latin America, and about 8 million people are infected worldwide. There is a need for more effective drugs for the acute, undetermined and chronic phases of the disease that, in addition, do not cause side effects, stimulating the search for identification of new drug targets, as well as new chemotherapeutic targets. Trypanosomatids contain characteristic structures, such as the nucleus that undergoes a closed mitosis without chromosome formation and variations of chromatin packing in the different protozoa developmental stages. The nuclear DNA is condensed by histones that suffer post-translational modifications, such as addition of methyl groups by histone methyltransferases (MHT) and addition of acetyl groups by acetyltransferases. These processes modulate gene expression and chromatin organization, which are crucial to transcription, replication, repair and recombination. In the present study, the effects of chaetocin, a HMT inhibitor, on T. cruzi epimastigote proliferation, viability, ultrastructure and cell cycle were investigated. Results indicate that chaetocin promoted irreversible inhibition of protozoa growth, evident unpacking of nuclear heterochromatin and intense nucleolus fragmentation, which is associated with parasite cell cycle arrest and RNA transcription blockage. Taken together, data obtained with chaetocin treatment stimulate the use of histone methyltransferase inhibitors against pathogenic trypanosomatids.


Assuntos
Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Animais , Ciclo Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Histona Metiltransferases , Humanos , Piperazinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA