Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nutrients ; 16(15)2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39125356

RESUMO

Glutathione (GSH), a tripeptide synthesized intracellularly, serves as a pivotal antioxidant, neutralizing reactive oxygen species (ROS) and reactive nitrogen species (RNS) while maintaining redox homeostasis and detoxifying xenobiotics. Its potent antioxidant properties, particularly attributed to the sulfhydryl group (-SH) in cysteine, are crucial for cellular health across various organelles. The glutathione-glutathione disulfide (GSH-GSSG) cycle is facilitated by enzymes like glutathione peroxidase (GPx) and glutathione reductase (GR), thus aiding in detoxification processes and mitigating oxidative damage and inflammation. Mitochondria, being primary sources of reactive oxygen species, benefit significantly from GSH, which regulates metal homeostasis and supports autophagy, apoptosis, and ferroptosis, playing a fundamental role in neuroprotection. The vulnerability of the brain to oxidative stress underscores the importance of GSH in neurological disorders and regenerative medicine. Nebulization of glutathione presents a novel and promising approach to delivering this antioxidant directly to the central nervous system (CNS), potentially enhancing its bioavailability and therapeutic efficacy. This method may offer significant advantages in mitigating neurodegeneration by enhancing nuclear factor erythroid 2-related factor 2 (NRF2) pathway signaling and mitochondrial function, thereby providing direct neuroprotection. By addressing oxidative stress and its detrimental effects on neuronal health, nebulized GSH could play a crucial role in managing and potentially ameliorating conditions such as Parkinson's Disease (PD) and Alzheimer's Disease (AD). Further clinical research is warranted to elucidate the therapeutic potential of nebulized GSH in preserving mitochondrial health, enhancing CNS function, and combating neurodegenerative conditions, aiming to improve outcomes for individuals affected by brain diseases characterized by oxidative stress and neuroinflammation.


Assuntos
Antioxidantes , Glutationa , Doenças Neurodegenerativas , Estresse Oxidativo , Humanos , Estresse Oxidativo/efeitos dos fármacos , Glutationa/metabolismo , Glutationa/administração & dosagem , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Doenças Neurodegenerativas/tratamento farmacológico , Nebulizadores e Vaporizadores , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Animais , Espécies Reativas de Oxigênio/metabolismo , Administração por Inalação , Fator 2 Relacionado a NF-E2/metabolismo
2.
Int J Mol Sci ; 25(11)2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38891792

RESUMO

Bioproducts derived from platelets have been extensively used across various medical fields, with a recent notable surge in their application in dermatology and aesthetic procedures. These products, such as platelet-rich plasma (PRP) and platelet-rich fibrin (PRF), play crucial roles in inducing blood vessel proliferation through growth factors derived from peripheral blood. PRP and PRF, in particular, facilitate fibrin polymerization, creating a robust structure that serves as a reservoir for numerous growth factors. These factors contribute to tissue regeneration by promoting cell proliferation, differentiation, and migration and collagen/elastin production. Aesthetic medicine harnesses these effects for diverse purposes, including hair restoration, scar treatment, striae management, and wound healing. Furthermore, these biological products can act as adjuvants with other treatment modalities, such as laser therapy, radiofrequency, and microneedling. This review synthesizes the existing evidence, offering insights into the applications and benefits of biological products in aesthetic medicine.


Assuntos
Fibrina Rica em Plaquetas , Plasma Rico em Plaquetas , Medicina Regenerativa , Humanos , Plasma Rico em Plaquetas/metabolismo , Plasma Rico em Plaquetas/química , Medicina Regenerativa/métodos , Fibrina Rica em Plaquetas/metabolismo , Cicatrização , Plaquetas/metabolismo , Animais , Regeneração , Proliferação de Células
3.
Bioengineering (Basel) ; 11(5)2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38790327

RESUMO

Spinal cord injury (SCI) represents a severe trauma to the nervous system, leading to significant neurological damage, chronic inflammation, and persistent neuropathic pain. Current treatments, including pharmacotherapy, immobilization, physical therapy, and surgical interventions, often fall short in fully addressing the underlying pathophysiology and resultant disabilities. Emerging research in the field of regenerative medicine has introduced innovative approaches such as autologous orthobiologic therapies, with bone marrow aspirate (BMA) being particularly notable for its regenerative and anti-inflammatory properties. This review focuses on the potential of BMA to modulate inflammatory pathways, enhance tissue regeneration, and restore neurological function disrupted by SCI. We hypothesize that BMA's bioactive components may stimulate reparative processes at the cellular level, particularly when applied at strategic sites like the sacral hiatus to influence lumbar centers and higher neurological structures. By exploring the mechanisms through which BMA influences spinal repair, this review aims to establish a foundation for its application in clinical settings, potentially offering a transformative approach to SCI management that extends beyond symptomatic relief to promoting functional recovery.

4.
Int Wound J ; 21(4): e14854, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619232

RESUMO

Chronic wounds, characterized by prolonged healing processes, pose a significant medical challenge with multifaceted aetiologies, including local and systemic factors. Here, it explores the complex pathogenesis of chronic wounds, emphasizing the disruption in the normal phases of wound healing, particularly the inflammatory phase, leading to an imbalance in extracellular matrix (ECM) dynamics and persistent inflammation. Senescent cell populations further contribute to impaired wound healing in chronic lesions. Traditional medical management focuses on addressing underlying causes, but many chronic wounds resist to conventional treatments, necessitating innovative approaches. Recent attention has turned to autologous orthobiologics, such as platelet-rich plasma (PRP), platelet-rich fibrin (PRF) and mesenchymal stem cells (MSCs), as potential regenerative interventions. These biologically derived materials, including bone marrow aspirate/concentrate (BMA/BMAC) and adipose tissue-derived stem cells (ADSCs), exhibit promising cytokine content and regenerative potential. MSCs, in particular, have emerged as key players in wound healing, influencing inflammation and promoting tissue regeneration. This paper reviews relevant scientific literature regarding basic science and brings real-world evidence regarding the use of orthobiologics in the treatment of chronic wounds, irrespective of aetiology. The discussion highlights the regenerative properties of PRP, PRF, BMA, BMAC and SVF, showcasing their potential to enhance wound healing. Despite advancements, further research is essential to elucidate the specific roles of each orthobiologic and determine optimal applications for different wound types. The conclusion underscores the evolving landscape in chronic wound management, with a call for more comprehensive studies to refine treatment strategies and maximize the benefits of regenerative medicine.


Assuntos
Tecido Adiposo , Citocinas , Humanos , Matriz Extracelular , Inflamação , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA