Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(22): e111952, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36314651

RESUMO

Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.


Assuntos
Envelhecimento , Encéfalo , Proteínas Serina-Treonina Quinases , Resposta a Proteínas não Dobradas , Proteína 1 de Ligação a X-Box , Animais , Camundongos , Envelhecimento/genética , Encéfalo/metabolismo , Estresse do Retículo Endoplasmático/genética , Proteínas Serina-Treonina Quinases/genética , Proteômica , Transdução de Sinais/fisiologia , Proteína 1 de Ligação a X-Box/genética , Proteína 1 de Ligação a X-Box/metabolismo
2.
Naunyn Schmiedebergs Arch Pharmacol ; 366(6): 587-95, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12444501

RESUMO

This study attempted to characterize pharmacologically the involvement of 5-HT(2A) receptors in 5-HT-induced contractile responses in human umbilical vein (HUV) rings employing functional and radioligand binding assays. In HUV rings, prazosin 1 micro M did not affect contractile responses elicited by 5-HT, ruling out the involvement of alpha(1)-adrenoceptors in contractile responses to 5-HT. 5-HT-induced contractions were competitively blocked by ketanserin, a 5-HT(2A)-selective antagonist. The apparent pA(2) value was 9.8 and the Schild slope significantly less than unity, suggesting that 5-HT-induced responses are mediated by a heterogeneous receptor population. Alpha-methyl-5-HT, a selective 5-HT(2) receptor agonist, induced contractions that were antagonized in a competitive manner by ketanserin. The slope regression was not significantly different from unity and the pA(2) value was 8.8. The selective 5-HT(2A) ligand spiperone produced a parallel rightward shift on 5-HT CRCs in HUV rings. The calculated pA(2) was 9.0, which is in accord for an interaction with the 5-HT(2A) receptor subtype. Alpha-methyl-5-HT CRCs were competitively blocked by spiperone treatment. The Schild analysis yielded a pA(2) of 9.1 with a slope not significantly different from unity. The 5-HT(2C/2A) antagonist mesulergine 10 nM did not affect 5-HT CRCs, suggesting that 5-HT(2C) receptors are not involved in 5-HT-elicited contractions. Higher concentrations of mesulergine showed a parallel rightward shift on 5-HT responses. The calculated pA(2) was 7.44, which suggests an interaction with the 5-HT(2A) receptor subtype. In addition, mesulergine competitively blocked alpha-methyl-5-HT CRCs. The Schild slope was not significantly different from unity and the p A(2) value was 7.98. The binding of [(3)H]ketanserin to HUV membranes was saturable and of high affinity. Ketanserin displayed a monophasic curve which was best fit with a single component of binding. Nonlinear least squares analysis of the binding curves revealed a high affinity K(d) of 0.30 nM and a B(max) of 134 fmol/mg protein. These findings provide strong pharmacological evidence of the involvement of 5-HT(2A) receptors in 5-HT-induced vasoconstriction in HUV. In addition, the contribution of another receptor population cannot be excluded. The results also suggest that this receptor population is neither an alpha(1)-adrenoceptor nor a 5-HT(2C) receptor subtype.


Assuntos
Ensaio Radioligante/métodos , Receptores de Serotonina/metabolismo , Veias Umbilicais/metabolismo , Vasoconstrição/fisiologia , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Receptor 5-HT2A de Serotonina , Serotonina/metabolismo , Serotonina/farmacologia , Veias Umbilicais/efeitos dos fármacos , Veias Umbilicais/fisiologia , Vasoconstrição/efeitos dos fármacos
3.
J Pharmacol Exp Ther ; 301(3): 975-80, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12023527

RESUMO

Bradykinin (BK) B(1) receptors are thought to exert a pivotal role in maintaining and modulating inflammatory processes. They are not normally present under physiological situations but are induced under physiopathological conditions. In isolated human umbilical vein (HUV), a spontaneous BK B(1) receptor up-regulation and sensitization process has been demonstrated. Based on pyrrolidine-dithiocarbamate inhibition, it has been proposed that this phenomenon is dependent on nuclear factor-kappaB (NF-kappaB) activation. The aim of this study was to further evaluate the NF-kappaB pathway involvement on BK B(1) receptor sensitization in isolated HUV, using several pharmacological tools. In 5-h incubated rings, either the I-kappaB kinase inhibitor 3-(4-methylphenylsulfonyl)-2-propenenitrile (Bay 11-7082) or the proteasome activity inhibitor Z-Leu-Leu-Leu-CHO (MG-132) inhibited the development of the BK B(1) receptor-sensitized contractile responses. Furthermore, pro-inflammatory cytokine interleukin-6 (IL-6) produced a leftward shift of the concentration-response curve to the BK B(1) receptor agonist, whereas anti-inflammatory cytokines interleukin-4 (IL-4) and tumor growth factor-beta1 (TGF-beta1) produced a rightward shift of the responses to des-Arg(9)-BK in our preparations. Taken together, these results point to NF-kappaB as a key intermediary in the activation of the expression of BK B(1) receptor-sensitized responses in HUV and support the role of inflammatory mediators in the modulation of this process.


Assuntos
Bradicinina/análogos & derivados , NF-kappa B/fisiologia , Nitrilas , Compostos Orgânicos , Receptores da Bradicinina/fisiologia , Transdução de Sinais/fisiologia , Sulfonas , Veias Umbilicais/fisiologia , Antineoplásicos/farmacologia , Bradicinina/farmacologia , Inibidores de Cisteína Proteinase/farmacologia , Citocinas/metabolismo , Citocinas/farmacologia , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Humanos , Recém-Nascido , Interleucina-4/farmacologia , Interleucina-6/farmacologia , Leupeptinas/farmacologia , Receptor B1 da Bradicinina , Proteínas Recombinantes/farmacologia , Serotonina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador beta/farmacologia , Fator de Crescimento Transformador beta1 , Veias Umbilicais/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA