Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658592

RESUMO

The microneme organelles of Toxoplasma gondii tachyzoites release protein complexes (MICs), including one composed of the transmembrane protein MIC6 plus MIC1 and MIC4. In this complex, carbohydrate recognition domains of MIC1 and MIC4 are exposed and interact with terminal sialic acid and galactose residues, respectively, of host cell glycans. Recently, we demonstrated that MIC1 and MIC4 binding to the N-glycans of Toll-like receptor (TLR) 2 and TLR4 on phagocytes triggers cell activation and pro-inflammatory cytokine production. Herein, we investigated the requirement for TLR2 heterodimerization and co-receptors in MIC-induced responses, as well as the signaling molecules involved. We used MICs to stimulate macrophages and HEK293T cells transfected with TLR2 and TLR1 or TLR6, both with or without the co-receptors CD14 and CD36. Then, the cell responses were analyzed, including nuclear factor-kappa B (NF-κB) activation and cytokine production, which showed that (1) only TLR2, among the studied factors, is crucial for MIC-induced cell activation; (2) TLR2 heterodimerization augments, but is not critical for, activation; (3) CD14 and CD36 enhance the response to MIC stimulus; and (4) MICs activate cells through a transforming growth factor beta-activated kinase 1 (TAK1)-, mammalian p38 mitogen-activated protein kinase (p38)-, and NF-κB-dependent pathway. Remarkably, among the studied factors, the interaction of MIC1 and MIC4 with TLR2 N-glycans is sufficient to induce cell activation, which promotes host protection against T. gondii infection.


Assuntos
Moléculas de Adesão Celular/química , Moléculas de Adesão Celular/metabolismo , Dimerização , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Receptor 2 Toll-Like/química , Receptor 2 Toll-Like/metabolismo , Toxoplasma/metabolismo , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Citocinas/análise , Feminino , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/genética , Receptores de Lipopolissacarídeos/metabolismo , MAP Quinase Quinase Quinases/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Células RAW 264.7 , Transdução de Sinais , Receptor 1 Toll-Like/metabolismo , Receptor 6 Toll-Like/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
PLoS Pathog ; 15(6): e1007871, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31226171

RESUMO

Infection of host cells by Toxoplasma gondii is an active process, which is regulated by secretion of microneme (MICs) and rhoptry proteins (ROPs and RONs) from specialized organelles in the apical pole of the parasite. MIC1, MIC4 and MIC6 assemble into an adhesin complex secreted on the parasite surface that functions to promote infection competency. MIC1 and MIC4 are known to bind terminal sialic acid residues and galactose residues, respectively and to induce IL-12 production from splenocytes. Here we show that rMIC1- and rMIC4-stimulated dendritic cells and macrophages produce proinflammatory cytokines, and they do so by engaging TLR2 and TLR4. This process depends on sugar recognition, since point mutations in the carbohydrate-recognition domains (CRD) of rMIC1 and rMIC4 inhibit innate immune cells activation. HEK cells transfected with TLR2 glycomutants were selectively unresponsive to MICs. Following in vitro infection, parasites lacking MIC1 or MIC4, as well as expressing MIC proteins with point mutations in their CRD, failed to induce wild-type (WT) levels of IL-12 secretion by innate immune cells. However, only MIC1 was shown to impact systemic levels of IL-12 and IFN-γ in vivo. Together, our data show that MIC1 and MIC4 interact physically with TLR2 and TLR4 N-glycans to trigger IL-12 responses, and MIC1 is playing a significant role in vivo by altering T. gondii infection competency and murine pathogenesis.


Assuntos
Moléculas de Adesão Celular/imunologia , Células Dendríticas/imunologia , Imunidade Inata , Macrófagos/imunologia , Proteínas de Protozoários/imunologia , Ácidos Siálicos/imunologia , Receptor 2 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Toxoplasma/imunologia , Toxoplasmose Animal/imunologia , Animais , Interleucina-12/imunologia , Camundongos , Camundongos Knockout , Receptor 2 Toll-Like/genética , Receptor 4 Toll-Like/genética , Toxoplasmose Animal/genética
3.
Sci Rep ; 7(1): 7083, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28765651

RESUMO

Agonist interaction with Toll-like receptors (TLRs) induces T cell-mediated immunity, which is effective against intracellular pathogens. Consequently, TLR agonists are being tried as immunomodulatory agents. The lectin ArtinM targets TLR2 N-glycans on macrophages, induces cytokines production, and promotes T helper-1 immunity, a process that culminates in resistance to several parasitic and fungal infections in vivo. Because co-receptors influence agonist binding to TLRs, we investigated whether CD14 is required for macrophage activation induced by ArtinM. Macrophages from wild-type mice stimulated by ArtinM not only produced cytokines but also had the following activation profile: (i) expression of M1 polarization markers; (ii) nitrite oxide production; (iii) cellular migration; (iv) enhanced phagocytic and fungicide activity; (v) modulation of TLR2 expression; and (vi) activation of NF-κB pathway. This activation profile induced by ArtinM was evaluated in macrophages lacking CD14 that showed none of the ArtinM effects. We demonstrated by immunoprecipitation and sugar inhibition assays the physical interaction of ArtinM, TLR2, and CD14, which depends on recognition of the trimannoside that constitutes the core of N-glycans. Thus, our study showed that CD14 is critical for ArtinM-induced macrophage activation, providing fundamental insight into the design of anti-infective therapies based on carbohydrate recognition.


Assuntos
Antígenos CD/genética , Antígenos CD/metabolismo , Ativação de Macrófagos/fisiologia , Receptor 2 Toll-Like/metabolismo , Animais , Citocinas/metabolismo , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NF-kappa B/metabolismo , Polissacarídeos/metabolismo
4.
PLoS One ; 11(2): e0149721, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26901413

RESUMO

ArtinM is a D-mannose-binding lectin extracted from the seeds of Artocarpus heterophyllus that interacts with TLR2 N-glycans and activates antigen-presenting cells (APCs), as manifested by IL-12 production. In vivo ArtinM administration induces Th1 immunity and confers protection against infection with several intracellular pathogens. In the murine model of Candida albicans infection, it was verified that, in addition to Th1, ArtinM induces Th17 immunity manifested by high IL-17 levels in the treated animals. Herein, we investigated the mechanisms accounting for the ArtinM-induced IL-17 production. We found that ArtinM stimulates the IL-17 production by spleen cells in BALB/c or C57BL/6 mice, a response that was significantly reduced in the absence of IL-23, MyD88, or IL-1R. Furthermore, we showed that ArtinM directly induced the IL-23 mRNA expression and the IL-1 production by macrophages. Consistently, in cell suspensions depleted of macrophages, the IL-17 production stimulated by ArtinM was reduced by 53% and the exogenous IL-23 acted synergistically with ArtinM in promoting IL-17 production by spleen cell suspensions. We verified that the absence of IL-23, IL-1R, or MyD88 inhibited, but did not block, the IL-17 production by ArtinM-stimulated spleen cells. Therefore, we investigated whether ArtinM exerts a direct effect on CD4+ T cells in promoting IL-17 production. Indeed, spleen cell suspensions depleted of CD4+ T cells responded to ArtinM with very low levels of IL-17 release. Likewise, isolated CD4+ T cells under ArtinM stimulus augmented the expression of TGF-ß mRNA and released high levels of IL-17. Considering the observed synergism between IL-23 and ArtinM, we used cells from IL-23 KO mice to assess the direct effect of lectin on CD4+ T cells. We verified that ArtinM increased the IL-17 production significantly, a response that was inhibited when the CD4+ T cells were pre-incubated with anti-CD3 antibody. In conclusion, ArtinM stimulates the production of IL-17 by CD4+ T cells in two major ways: (I) through the induction of IL-23 and IL-1 by APCs and (II) through the direct interaction with CD3 on the CD4+ T cells. This study contributes to elucidation of mechanisms accounting for the property of ArtinM in inducing Th17 immunity and opens new perspectives in designing strategies for modulating immunity by using carbohydrate recognition agents.


Assuntos
Artocarpus/química , Complexo CD3/imunologia , Interleucina-17/imunologia , Interleucina-1/imunologia , Interleucina-23/imunologia , Lectina de Ligação a Manose , Lectinas de Plantas , Células Th17/imunologia , Animais , Complexo CD3/genética , Candida albicans/imunologia , Candidíase/tratamento farmacológico , Candidíase/genética , Candidíase/imunologia , Interleucina-1/genética , Interleucina-17/genética , Interleucina-23/genética , Lectina de Ligação a Manose/química , Lectina de Ligação a Manose/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/imunologia , Lectinas de Plantas/química , Lectinas de Plantas/farmacologia , Receptores de Interleucina-1/genética , Receptores de Interleucina-1/imunologia , Células Th1/imunologia
5.
PLoS One ; 10(12): e0144507, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26659253

RESUMO

Toxoplasma gondii is an obligate intracellular protozoan parasite found worldwide that is able to chronically infect almost all vertebrate species, especially birds and mammalians. Chitinases are essential to various biological processes, and some pathogens rely on chitinases for successful parasitization. Here, we purified and characterized a chitinase from T. gondii. The enzyme, provisionally named Tg_chitinase, has a molecular mass of 13.7 kDa and exhibits a Km of 0.34 mM and a Vmax of 2.64. The optimal environmental conditions for enzymatic function were at pH 4.0 and 50 °C. Tg_chitinase was immunolocalized in the cytoplasm of highly virulent T. gondii RH strain tachyzoites, mainly at the apical extremity. Tg_chitinase induced macrophage activation as manifested by the production of high levels of pro-inflammatory cytokines, a pathogenic hallmark of T. gondii infection. In conclusion, to our knowledge, we describe for the first time a chitinase of T. gondii tachyzoites and provide evidence that this enzyme might influence the pathogenesis of T. gondii infection.


Assuntos
Quitinases/imunologia , Ativação de Macrófagos/imunologia , Macrófagos Peritoneais/imunologia , Proteínas de Protozoários/imunologia , Toxoplasma/imunologia , Sequência de Aminoácidos , Animais , Quitinases/genética , Quitinases/metabolismo , Cromatografia Líquida , Citocinas/imunologia , Citocinas/metabolismo , Citoplasma/enzimologia , Interações Hospedeiro-Parasita/imunologia , Concentração de Íons de Hidrogênio , Mediadores da Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Cinética , Macrófagos Peritoneais/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microscopia Confocal , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Espectrometria de Massas em Tandem , Temperatura , Toxoplasma/enzimologia , Toxoplasma/fisiologia
6.
PLoS One ; 10(11): e0143087, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26575028

RESUMO

Toxoplasmosis, a zoonotic disease caused by Toxoplasma gondii, is an important public health problem and veterinary concern. Although there is no vaccine for human toxoplasmosis, many attempts have been made to develop one. Promising vaccine candidates utilize proteins, or their genes, from microneme organelle of T. gondii that are involved in the initial stages of host cell invasion by the parasite. In the present study, we used different recombinant microneme proteins (TgMIC1, TgMIC4, or TgMIC6) or combinations of these proteins (TgMIC1-4 and TgMIC1-4-6) to evaluate the immune response and protection against experimental toxoplasmosis in C57BL/6 mice. Vaccination with recombinant TgMIC1, TgMIC4, or TgMIC6 alone conferred partial protection, as demonstrated by reduced brain cyst burden and mortality rates after challenge. Immunization with TgMIC1-4 or TgMIC1-4-6 vaccines provided the most effective protection, since 70% and 80% of mice, respectively, survived to the acute phase of infection. In addition, these vaccinated mice, in comparison to non-vaccinated ones, showed reduced parasite burden by 59% and 68%, respectively. The protective effect was related to the cellular and humoral immune responses induced by vaccination and included the release of Th1 cytokines IFN-γ and IL-12, antigen-stimulated spleen cell proliferation, and production of antigen-specific serum antibodies. Our results demonstrate that microneme proteins are potential vaccines against T. gondii, since their inoculation prevents or decreases the deleterious effects of the infection.


Assuntos
Proteínas de Protozoários/imunologia , Vacinas Protozoárias/imunologia , Toxoplasma/imunologia , Toxoplasmose/prevenção & controle , Vacinação , Animais , Encéfalo/parasitologia , Células Cultivadas , Citocinas/sangue , Escherichia coli , Feminino , Imunidade Celular , Imunidade Humoral , Camundongos Endogâmicos C57BL , Proteínas de Protozoários/biossíntese , Vacinas Protozoárias/biossíntese , Toxoplasmose/imunologia , Toxoplasmose/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA