Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 13(8): e0202255, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30102718

RESUMO

In tropical agriculture, the vigorously growing Bracken fern causes severe problems by invading pastures and out-competing the common pasture grasses. Due to infestation by that weed, pastures are abandoned after a few years, and as a fatal consequence, the biodiversity-rich tropical forest is progressively cleared for new grazing areas. Here we present a broad physiological comparison of the two plant species that are the main competitors on the pastures in the tropical Ecuadorian Andes, the planted forage grass Setaria sphacelata and the weed Bracken (Pteridium arachnoideum). With increasing elevation, the competitive power of Bracken increases as shown by satellite data of the study region. Using data obtained from field measurements, the annual biomass production of both plant species, as a measure of their competitive strength, was modeled over an elevational gradient from 1800 to 2800 m. The model shows that with increasing elevation, biomass production of the two species shifts in favor of Bracken which, above 1800 m, is capable of outgrowing the grass. In greenhouse experiments, the effects on plant growth of the presumed key variables of the elevational gradient, temperature and UV radiation, were separately analyzed. Low temperature, as well as UV irradiation, inhibited carbon uptake of the C4-grass more than that of the C3-plant Bracken. The less temperature-sensitive photosynthesis of Bracken and its effective protection from UV radiation contribute to the success of the weed on the highland pastures. In field samples of Bracken but not of Setaria, the content of flavonoids as UV-scavengers increased with the elevation. Combining modeling with measurements in greenhouse and field allowed to explain the invasive growth of a common weed in upland pastures. The performance of Setaria decreases with elevation due to suboptimal photosynthesis at lower temperatures and the inability to adapt its cellular UV screen.


Assuntos
Altitude , Espécies Introduzidas , Pteridium/crescimento & desenvolvimento , Setaria (Planta)/crescimento & desenvolvimento , Agricultura , Biomassa , Ácidos Cumáricos , Equador , Fotossíntese , Plantas Daninhas , Pteridium/química , Pteridium/efeitos da radiação , Setaria (Planta)/química , Setaria (Planta)/efeitos da radiação , Temperatura , Tiramina/análogos & derivados , Raios Ultravioleta
2.
Planta ; 236(5): 1447-58, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22763502

RESUMO

Ferredoxins are iron-sulfur proteins involved in various one-electron transfer pathways. Ferredoxin levels decrease under adverse environmental conditions in photosynthetic organisms. In cyanobacteria, this decline is compensated by induction of flavodoxin, an isofunctional flavoprotein. Flavodoxin is not present in higher plants, but transgenic Nicotiana tabacum lines accumulating Anabaena flavodoxin in plastids display increased tolerance to different sources of environmental stress. As the degree of tolerance correlated with flavodoxin dosage in plastids of nuclear-transformed transgenic tobacco, we prepared plants expressing even higher levels of flavodoxin by direct plastid transformation. A suite of nuclear- and chloroplast-transformed lines expressing a wide range of flavodoxin levels, from 0.3 to 10.8 µmol m(-2), did not exhibit any detectable growth phenotype relative to the wild type. In the absence of stress, the contents of both chlorophyll a and carotenoids, as well as the photosynthetic performance (photosystem II maximum efficiency, photosystem II operating efficiency, electron transport rates and carbon assimilation rates), displayed a moderate increase with flavodoxin concentrations up to 1.3-2.6 µmol flavodoxin m(-2), and then declined to wild-type levels. Stress tolerance, as estimated by the damage inflicted on exposure to the pro-oxidant methyl viologen, also exhibited a bell-shaped response, with a significant, dose-dependent increase in tolerance followed by a drop in the high-expressing lines. The results indicate that optimal photosynthetic performance and stress tolerance were observed at flavodoxin levels comparable to those of endogenous ferredoxin. Further increases in flavodoxin content become detrimental to plant fitness.


Assuntos
Flavodoxina/genética , Nicotiana/genética , Fotossíntese/fisiologia , Estresse Fisiológico/genética , Anabaena/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Clorofila A , Cloroplastos/genética , Relação Dose-Resposta a Droga , Flavodoxina/metabolismo , Flavodoxina/farmacologia , Regulação da Expressão Gênica , Estresse Oxidativo/genética , Paraquat/farmacologia , Complexo de Proteína do Fotossistema II/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Plastídeos/genética , Nicotiana/efeitos dos fármacos , Nicotiana/crescimento & desenvolvimento , Nicotiana/fisiologia
3.
Plant J ; 65(6): 922-35, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21205028

RESUMO

Ferredoxins are the main electron shuttles in chloroplasts, accepting electrons from photosystem I and delivering them to essential oxido-reductive pathways in the stroma. Ferredoxin levels decrease under adverse environmental conditions in both plants and photosynthetic micro-organisms. In cyanobacteria and some algae, this decrease is compensated for by induction of flavodoxin, an isofunctional flavoprotein that can replace ferredoxin in many reactions. Flavodoxin is not present in plants, but tobacco lines expressing a plastid-targeted cyanobacterial flavodoxin developed increased tolerance to environmental stress. Chloroplast-located flavodoxin interacts productively with endogenous ferredoxin-dependent pathways, suggesting that its protective role results from replacement of stress-labile ferredoxin. We tested this hypothesis by using RNA antisense and interference techniques to decrease ferredoxin levels in transgenic tobacco. Ferredoxin-deficient lines showed growth arrest, leaf chlorosis and decreased CO(2) assimilation. Chlorophyll fluorescence measurements indicated impaired photochemistry, over-reduction of the photosynthetic electron transport chain and enhanced non-photochemical quenching. Expression of flavodoxin from the nuclear or plastid genome restored growth, pigment contents and photosynthetic capacity, and relieved the electron pressure on the electron transport chain. Tolerance to oxidative stress also recovered. In the absence of flavodoxin, ferredoxin could not be decreased below 45% of physiological content without fatally compromising plant survival, but in its presence, lines with only 12% remaining ferredoxin could grow autotrophically, with almost wild-type phenotypes. The results indicate that the stress tolerance conferred by flavodoxin expression in plants stems largely from functional complementation of endogenous ferredoxin by the cyanobacterial flavoprotein.


Assuntos
Ferredoxinas/metabolismo , Flavodoxina/genética , Flavodoxina/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Anabaena/genética , Anabaena/metabolismo , Sequência de Bases , DNA de Plantas/genética , Ferredoxinas/deficiência , Ferredoxinas/genética , Técnicas de Silenciamento de Genes , Teste de Complementação Genética , Microscopia Eletrônica de Transmissão , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Interferência de RNA , RNA Antissenso/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Estresse Fisiológico , Nicotiana/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA