Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 130(3): 409-418, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35325023

RESUMO

BACKGROUND AND AIMS: The ecohydrological significance of leaf wetting due to atmospheric water in arid and semiarid ecosystems is not well understood. In these environments, the inputs of precipitation or dew formation resulting in leaf wetting have positive effects on plant functioning. However, its impact on plant water relations may depend on the degree of leaf surface wettability. In this study we evaluated leaf wettability and other leaf traits and its effects on foliar water uptake and canopy interception in plant species of a Patagonian steppe. We also studied how leaf traits affecting wettability vary seasonally from growing to dry season. METHODS: Contact angle of a water droplet with the leaf surface, water adhesion, droplet retention angle, stomatal density, cuticular conductance, canopy interception and maximum foliar water uptake were determined in six dominant shrub species. KEY RESULTS: All species increased leaf wettability during the dry season and most species were considered highly wettable. The leaf surface had very high capacity to store and retain water. We found a negative correlation between foliar water uptake and leaf hydrophilia. CONCLUSIONS: Despite the diversity of life forms, including cushion shrubs and tall shrubs, as well as phenological variability, all species converged in similar seasonal changes in leaf traits that favour wettability. Intercepted water by crowns and the extremely high capacity of retention of droplets on leaf surfaces can have a significant impact on eco-hydrological process in water limited ecosystems where most of water sources during the growing and the dry season may be small rainfall events or dew, which do not always increase soil water availability.


Assuntos
Água Subterrânea , Água , Ecossistema , Folhas de Planta , Plantas , Solo , Molhabilidade
2.
Tree Physiol ; 41(10): 1836-1847, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-33823046

RESUMO

Low temperatures and drought are the main environmental factors affecting plant growth and productivity across most of the terrestrial biomes. The objective of this study was to analyze the effects of water deficits before the onset of low temperatures in winter to enhance freezing resistance in olive trees. The study was carried out near the coast of Chubut, Argentina. Plants of five olive cultivars were grown outdoor in pots and exposed to different water deficit treatments. We assessed leaf water relations, ice nucleation temperature (INT), cell damage (LT50), plant growth and leaf nitrogen content during summer and winter in all cultivars and across water deficit treatments. Leaf INT and LT50 decreased significantly from summer to winter within each cultivar and between treatments. We observed a trade-off between resources allocation to freezing resistance and vegetative growth, such that an improvement in resistance to sub-zero temperatures was associated with lower growth in tree height. Water deficit applied during summer increased the amount of osmotically active solutes and decreased the leaf water potentials. This type of legacy effect persists during the winter after the water deficit even when treatment was removed by natural rainfalls.


Assuntos
Olea , Água , Aclimatação , Congelamento , Temperatura
3.
Oecologia ; 193(2): 337-348, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32474806

RESUMO

Foliar water uptake (FWU) has been reported for different species across several ecosystems types. However, little attention has been given to arid ecosystems, where FWU during dew formation or small rain events could ameliorate water deficits. FWU and their effects on leaf water potential (ΨLeaf) were evaluated in grasses and shrubs exploring different soil water sources in a Patagonian steppe. Also, seasonal variability in FWU and the role of cell wall elasticity in determining the effects on ΨLeaf were assessed. Eleven small rain events (< 8 mm) and 45 days with dew formation were recorded during the study period. All species exhibited FWU after experimental wetting. There was a large variability in FWU across species, from 0.04 mmol m-2 s-1 in species with deep roots to 0.75 mmol m-2 s-1 in species with shallow roots. Species-specific mean FWU rates were positively correlated with mean transpiration rates. The increase in ΨLeaf after leaf wetting varied between 0.65 MPa and 1.67 MPa across species and seasons. The effects of FWU on ΨLeaf were inversely correlated with cell wall elasticity. FWU integrated over both seasons varied between 28 mol m-2 in species with deep roots to 361 mol m-2 in species with shallow roots. Taking into account the percentage of coverage of each species, accumulated FWU represented 1.6% of the total annual transpiration of grasses and shrubs in this ecosystem. Despite this low FWU integrated over time compared to transpiration, wetting leaves surfaces can help to avoid larger water deficit during the dry season.


Assuntos
Ecossistema , Água , Folhas de Planta , Transpiração Vegetal , Estações do Ano , Solo
4.
Plant Cell Environ ; 42(5): 1603-1614, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30613989

RESUMO

The hydraulic coordination along the water transport pathway helps trees provide adequate water supply to the canopy, ensuring that water deficits are minimized and that stomata remain open for CO2 uptake. We evaluated the stem and leaf hydraulic coordination and the linkages between hydraulic traits and the timing of diurnal depression of photosynthesis across seven evergreen tree species in the southern Andes. There was a positive correlation between stem hydraulic conductivity (ks ) and leaf hydraulic conductance (KLeaf ) across species. All species had similar maximum photosynthetic rates (Amax ). The species with higher ks and KLeaf attained Amax in the morning, whereas the species with lower ks and KLeaf exhibited their Amax in the early afternoon concurrently with turgor loss. These latter species had very negative leaf water potentials, but far from the pressure at which the 88% of leaf hydraulic conductance is lost. Our results suggest that diurnal gas exchange dynamics may be determined by leaf hydraulic vulnerability such that a species more vulnerable to drought restrict water loss and carbon assimilation earlier than species less vulnerable. However, under stronger drought, species with earlier CO2 uptake depression may increase the risk of hydraulic failure, as their safety margins are relatively narrow.


Assuntos
Fotossíntese/fisiologia , Estômatos de Plantas/metabolismo , Transpiração Vegetal/fisiologia , Árvores/metabolismo , Dióxido de Carbono/metabolismo , Ritmo Circadiano , Secas , Folhas de Planta/metabolismo , Caules de Planta/metabolismo , Água/metabolismo
5.
Tree Physiol ; 37(9): 1251-1262, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28633378

RESUMO

Stems and leaves of Olea europaea L. (olive) avoid freezing damage by substantial supercooling during the winter season. Physiological changes during acclimation to low temperatures were studied in five olive cultivars. Water relations and hydraulic traits, ice nucleation temperature (INT) and temperatures resulting in 50% damage (LT50) were determined. All cultivars showed a gradual decrease in INT and LT50 from the dry and warm summer to the wet and cold winter in Patagonia, Argentina. During acclimation to low temperatures there was an increase in leaf cell wall rigidity and stomatal conductance (gs), as well as a decrease in leaf apoplastic water content, leaf water potential (Ψ), sap flow and stem hydraulic conductivity (ks). More negative Ψ as a consequence of high gs and detrimental effects of low temperatures on root activity resulted in a substantial loss of ks due to embolism formation. Seasonal stem INT decrease from summer to winter was directly related to the xylem resistance to cavitation, determined by the loss of ks across cultivars. Thus the loss of freezable water in xylem vessels by embolisms increased stem supercooling capacity and delayed ice propagation from stems to the leaves. For the first time, a trade-off between xylem resistance to cavitation and stem and leaf supercooling capacity was observed in plants that avoid extracellular freezing by permanent supercooling. The substantial loss of hydraulic function in olive cultivar stems by embolism formation with their high repair costs are compensated by avoiding plant damage at very low subzero temperatures.


Assuntos
Congelamento , Caules de Planta/fisiologia , Madeira/fisiologia , Xilema/fisiologia , Argentina , Folhas de Planta , Estações do Ano , Água
6.
Plant Cell Environ ; 38(10): 2061-70, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25737264

RESUMO

Plants can avoid freezing damage by preventing extracellular ice formation below the equilibrium freezing temperature (supercooling). We used Olea europaea cultivars to assess which traits contribute to avoid ice nucleation at sub-zero temperatures. Seasonal leaf water relations, non-structural carbohydrates, nitrogen and tissue damage and ice nucleation temperatures in different plant parts were determined in five cultivars growing in the Patagonian cold desert. Ice seeding in roots occurred at higher temperatures than in stems and leaves. Leaves of cold acclimated cultivars supercooled down to -13 °C, substantially lower than the minimum air temperatures observed in the study site. During winter, leaf ice nucleation and leaf freezing damage (LT50 ) occurred at similar temperatures, typical of plant tissues that supercool. Higher leaf density and cell wall rigidity were observed during winter, consistent with a substantial acclimation to sub-zero temperatures. Larger supercooling capacity and lower LT50 were observed in cold-acclimated cultivars with higher osmotically active solute content, higher tissue elastic adjustments and lower apoplastic water. Irreversible leaf damage was only observed in laboratory experiments at very low temperatures, but not in the field. A comparative analysis of closely related plants avoids phylogenetic independence bias in a comparative study of adaptations to survive low temperatures.


Assuntos
Aclimatação , Parede Celular/metabolismo , Olea/fisiologia , Água/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Temperatura Baixa , Congelamento , Osmose , Estações do Ano
7.
Plant Cell Environ ; 36(12): 2163-74, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23639077

RESUMO

Hydraulic architecture was studied in shrub species differing in rooting depth in a cold desert in Southern Argentina. All species exhibited strong hydraulic segmentation between leaves, stems and roots with leaves being the most vulnerable part of the hydraulic pathway. Two types of safety margins describing the degree of conservation of the hydraulic integrity were used: the difference between minimum stem or leaf water potential (Ψ) and the Ψ at which stem or leaf hydraulic function was reduced by 50% (Ψ - Ψ50), and the difference between leaf and stem Ψ50. Leaf Ψ50 - stem Ψ50 increased with decreasing rooting depth. Large diurnal decreases in root-specific hydraulic conductivity suggested high root vulnerability to embolism across all species. Although stem Ψ50 became more negative with decreasing species-specific Ψsoil and minimum stem Ψ, leaf Ψ50 was independent of Ψ and minimum leaf Ψ. Species with embolism-resistant stems also had higher maximum stem hydraulic conductivity. Safety margins for stems were >2.1 MPa, whereas those for leaves were negative or only slightly positive. Leaves acted as safety valves to protect the integrity of the upstream hydraulic pathway, whereas embolism in lateral roots may help to decouple portions of the plant from the impact of drier soil layers.


Assuntos
Secas , Folhas de Planta/fisiologia , Fenômenos Fisiológicos Vegetais , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Xilema/fisiologia , Argentina , Ritmo Circadiano/fisiologia , Água
8.
Oecologia ; 173(3): 675-87, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23624673

RESUMO

Phenotypic plasticity in morphophysiological leaf traits in response to wind was studied in two dominant shrub species of the Patagonian steppe, used as model systems for understanding effects of high wind speed on leaf water relations and hydraulic properties of small woody plants. Morpho-anatomical traits, hydraulic conductance and conductivity and water relations in leaves of wind-exposed and protected crown sides were examined during the summer with nearly continuous high winds. Although exposed sides of the crowns were subjected to higher wind speeds and air saturation deficits than the protected sides, leaves throughout the crown had similar minimum leaf water potential (ΨL). The two species were able to maintain homeostasis in minimum ΨL using different physiological mechanisms. Berberis microphylla avoided a decrease in the minimum ΨL in the exposed side of the crown by reducing water loss by stomatal control, loss of cell turgor and low epidermal conductance. Colliguaja integerrima increased leaf water transport efficiency to maintain transpiration rates without increasing the driving force for water loss in the wind-exposed crown side. Leaf physiological changes within the crown help to prevent the decrease of minimum ΨL and thus contribute to the maintenance of homeostasis, assuring the hydraulic integrity of the plant under unfavorable conditions. The responses of leaf traits that contribute to mechanical resistance (leaf mass per area and thickness) differed from those of large physiological traits by exhibiting low phenotypic plasticity. The results of this study help us to understand the unique properties of shrubs which have different hydraulic architecture compared to trees.


Assuntos
Berberis/fisiologia , Euphorbiaceae/fisiologia , Homeostase/fisiologia , Fenótipo , Folhas de Planta/fisiologia , Transpiração Vegetal/fisiologia , Vento , Argentina , Clima Desértico , Folhas de Planta/anatomia & histologia , Estômatos de Plantas/fisiologia , Pressão , Estatísticas não Paramétricas , Água/metabolismo
10.
Tree Physiol ; 32(7): 880-93, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22684354

RESUMO

Hydraulic traits were studied for six Nothofagus species from South America (Argentina and Chile), and for three of these species two populations were studied. The main goal was to determine if properties of the water conductive pathway in stems and leaves are functionally coordinated and to assess if leaves are more vulnerable to cavitation than stems, consistent with the theory of hydraulic segmentation along the vascular system of trees in ecosystems subject to seasonal drought. Vulnerability to cavitation, hydraulic conductivity of stems and leaves, leaf water potential, wood density and leaf water relations were examined. Large variations in vulnerability to cavitation of stems and leaves were observed across populations and species, but leaves were consistently more vulnerable than stems. Water potential at 50% loss of maximum hydraulic efficiency (P(50)) ranged from -0.94 to -2.44 MPa in leaves and from -2.6 to -5.3 MPa in stems across species and populations. Populations in the driest sites had sapwood and leaves more vulnerable to cavitation than those grown in the wettest sites. Stronger diurnal down-regulation in leaf hydraulic conductance compared with stem hydraulic conductivity apparently has the function to slow down potential water loss in stems and protect stem hydraulics from cavitation. Species-specific differences in wood density and leaf hydraulic conductance (K(Leaf)) were observed. Both traits were functionally related: species with higher wood density had lower K(Leaf). Other stem and leaf hydraulic traits were functionally coordinated, resulting in Nothofagus species with an efficient delivery of water to the leaves. The integrity of the more expensive woody portion of the water transport pathway can thus be maintained at the expense of the replaceable portion (leaves) of the stem-leaf continuum under prolonged drought. Compensatory adjustments between hydraulic traits may help to decrease the rate of embolism formation in the trees more vulnerable to cavitation.


Assuntos
Magnoliopsida/fisiologia , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Água/metabolismo , Altitude , Transporte Biológico , Umidade , Chuva , Solo , América do Sul , Especificidade da Espécie , Temperatura , Madeira/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA