Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Pharm Sci ; 107(1): 286-296, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28847477

RESUMO

This work aimed at obtaining an optimized itraconazole (ITZ) solid oral formulation in terms of palatability and dissolution rate by combining different polymers using hot melt extrusion (HME), according to a simplex centroid mixture design. For this, the polymers Plasdone® (poly(1-vinylpyrrolidone-co-vinyl acetate) [PVP/VA]), Klucel® ELF (2-hydroxypropyl ether cellulose [HPC]), and Soluplus® (SOL, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol) were processed using a laboratory HME equipment operating without recirculation at constant temperature. Samples were characterized by physicochemical assays, as well as dissolution rate and palatability using an e-tongue. All materials became homogeneous and dense after HME processing. Thermal and structural analyses demonstrated drug amorphization, whereas IR spectroscopy evidenced drug stability and drug-excipient interactions in HME systems. Extrudates presented a significant increase in dissolution rate compared to ITZ raw material, mainly with formulations containing PVP/VA and HPC. A pronounced improvement in taste masking was also identified for HME systems, especially in those containing higher amounts of SOL and HPC. Data showed polymers act synergistically favoring formulation functional properties. Predicted best formulation should contain ITZ 25.0%, SOL 33.2%, HPC 28.9%, and PVP/VA 12.9% (w/w). Optimized response considering dissolution rate and palatability reinforces the benefit of polymer combinations.


Assuntos
Itraconazol/química , Celulose/análogos & derivados , Celulose/química , Química Farmacêutica/métodos , Composição de Medicamentos/métodos , Excipientes/química , Temperatura Alta , Polietilenoglicóis/química , Polímeros/química , Polivinil/química , Pirrolidinas/química , Solubilidade , Compostos de Vinila/química
2.
Eur J Pharm Sci ; 96: 411-419, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27746266

RESUMO

Currently marketed minoxidil formulations present inconveniences that range from a grease hard aspect they leave on the hair to more serious adverse reactions as scalp dryness and irritation. In this paper we propose a novel approach for minoxidil sulphate (MXS) delivery based on a solid effervescent formulation. The aim was to investigate whether the particle mechanical movement triggered by effervescence would lead to higher follicle accumulation. Preformulation studies using thermal, spectroscopic and morphological analysis demonstrated the compatibility between effervescent salts and the drug. The effervescent formulation demonstrated a 2.7-fold increase on MXS accumulation into hair follicles casts compared to the MXS solution (22.0±9.7µg/cm2 versus 8.3±4.0µg/cm2) and a significant drug increase (around 4-fold) in remaining skin (97.1±29.2µg/cm2) compared to the drug solution (23.5±6.1µg/cm2). The effervescent formulations demonstrated a prominent increase of drug permeation highly dependent on the effervescent mixture concentration in the formulation, confirming the hypothesis of effervescent reaction favoring drug penetration. Clinically, therapy effectiveness could be improved, increasing the administration interval, hence, patient compliance. More studies to investigate the follicular targeting potential and safety of new formulations are needed.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Minoxidil/administração & dosagem , Minoxidil/metabolismo , Absorção Cutânea/efeitos dos fármacos , Administração Cutânea , Animais , Química Farmacêutica , Folículo Piloso/efeitos dos fármacos , Folículo Piloso/metabolismo , Minoxidil/química , Técnicas de Cultura de Órgãos , Absorção Cutânea/fisiologia , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA