Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Inorg Biochem ; 240: 112088, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36630792

RESUMO

The synthesis, physico-chemical characterization and in vitro antiproliferative activity against the promastigote form of Leishmania amazonensis of two new cobalt(II) coordination compounds (i.e. [Co(HL1)Cl2]0.4,2H2O (1) and [Co(HL2)(Cl)(CH3OH)](ClO4).2H2O (2)) are reported, where HL1 = 4-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one and HL2 = 7-{3-[bis(pyridin-2-ylmethyl)amino]-2-hydroxypropoxy}-2H-chromen-2-one. X-ray diffraction studies were performed for complex (2) and the structure of complex (1) was built through Density Functional Theory (DFT) calculations. Complex (1) presented no cytotoxicity to LLC-MK2, but complex (2) was toxic. IC50 against promastigotes of L. amazonensis for complex (1) were 4.90 (24 h), 3.50 (48 h) and 3. 80 µmol L-1 (72 h), and for complex (2) were 2.09, 4.20 and 2.80 µmol L-1, respectively. Due to the high toxicity presented by complex (2) against LLC-MK2 host cells, mechanistic studies, to shed light on the probable mode of leishmanicidal activity, were carried out only for the non-cytotoxic complex. Complex (1) was able to elevate mitochondrial membrane potential of the parasites after treatment. Transmission electron microscopy revealed typical apoptotic condensation of chromatin, altered kinetoplast and mitochondria structures, suggesting that apoptosis-like cell death of the protozoa is probably mediated by an apoptotic mechanism associated with mitochondrial dysfunction (intrinsic pathway). Molecular docking studies with complex (1) upon protein tyrosine phosphatase (LmPRL-1) suggests a plausible positive complex anchoring mainly by hydrophobic and hydrogen bond forces close to the enzyme's catalytic site. These promising results for complex 1 will prompt future investigations against amastigote form of L. amazonensis.


Assuntos
Antiprotozoários , Leishmania , Parasitos , Animais , Cobalto/farmacologia , Simulação de Acoplamento Molecular , Apoptose , Mitocôndrias , Antiprotozoários/química
2.
Trop Med Infect Dis ; 7(2)2022 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-35202224

RESUMO

The necessity of drug combinations to treat leishmaniasis came to the surface mainly because of the toxicity of current treatments and the emergence of resistant strains. The calpain inhibitor MDL28170 has previously shown anti-Leishmania activity, therefore its use in association with standard drugs could provide a new alternative for the treatment strategy against leishmaniasis. In this study, we analyzed the potential of the combination of MDL28170 and the antileishmanial drug amphotericin B against Leishmania amazonensis and Leishmania chagasi. The compounds were tested in the combination of the ½ × IC50 value of MDL28170 plus the » × IC50 value of amphotericin B, which led to an increment in the anti-promastigote activity when compared to the single drug treatments. This drug association revealed several and severe morphophysiological changes on parasite cells, such as loss of plasma membrane integrity, reduced size of flagellum, and depolarization of mitochondrial membrane potential besides increased reactive oxygen species production. In addition, the combination of both drugs had a deleterious effect on the Leishmania-macrophage interaction, reflecting in a significant anti-amastigote action, which achieved a reduction of 50% in the association index. These results indicate that the combination treatment proposed here may represent a new alternative for leishmaniasis chemotherapy.

3.
J Enzyme Inhib Med Chem ; 35(1): 629-638, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32037904

RESUMO

Phialophora verrucosa causes several fungal human diseases, mainly chromoblastomycosis, which is extremely difficult to treat. Several studies have shown that human immunodeficiency virus peptidase inhibitors (HIV-PIs) are attractive candidates for antifungal therapies. This work focused on studying the action of HIV-PIs on peptidase activity secreted by P. verrucosa and their effects on fungal proliferation and macrophage interaction. We detected a peptidase activity from P. verrucosa able to cleave albumin, sensitive to pepstatin A and HIV-PIs, especially lopinavir, ritonavir and amprenavir, showing for the first time that this fungus secretes aspartic-type peptidase. Furthermore, lopinavir, ritonavir and nelfinavir reduced the fungal growth, causing remarkable ultrastructural alterations. Lopinavir and ritonavir also affected the conidia-macrophage adhesion and macrophage killing. Interestingly, P. verrucosa had its growth inhibited by ritonavir combined with either itraconazole or ketoconazole. Collectively, our results support the antifungal action of HIV-PIs and their relevance as a possible alternative therapy for fungal infections.


Assuntos
Antifúngicos/farmacologia , Ácido Aspártico Proteases/antagonistas & inibidores , Inibidores da Protease de HIV/farmacologia , Macrófagos/efeitos dos fármacos , Phialophora/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Ácido Aspártico Proteases/metabolismo , Carbamatos/síntese química , Carbamatos/química , Carbamatos/farmacologia , Relação Dose-Resposta a Droga , Furanos , Inibidores da Protease de HIV/síntese química , Inibidores da Protease de HIV/química , Humanos , Lopinavir/síntese química , Lopinavir/química , Lopinavir/farmacologia , Macrófagos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Phialophora/enzimologia , Phialophora/crescimento & desenvolvimento , Ritonavir/síntese química , Ritonavir/química , Ritonavir/farmacologia , Relação Estrutura-Atividade , Sulfonamidas/síntese química , Sulfonamidas/química , Sulfonamidas/farmacologia
4.
Med Mycol ; 58(7): 973-986, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31989170

RESUMO

The emerging opportunistic pathogens comprising the Candida haemulonii complex (C. haemulonii [Ch], C. duobushaemulonii [Cd] and C. haemulonii var. vulnera[Chv]) are notable for their intrinsic antifungal resistance. Different clinical manifestations are associated with these fungal infections; however, little is known about their biology and potential virulence attributes. Herein, we evaluated some surface properties of 12 clinical isolates of Ch (n = 5), Cd (n = 4) and Chv (n = 3) as well as their virulence on murine macrophages and Galleria mellonella larvae. Scanning electron microscopy demonstrated the presence of homogeneous populations among the species of the C. haemulonii complex, represented by oval yeasts with surface irregularities able to form aggregates. Cell surface hydrophobicity was isolate-specific, exhibiting high (16.7%), moderate (25.0%) and low (58.3%) hydrophobicity. The isolates had negative surface charge, except for one. Mannose/glucose- and N-acetylglucosamine-containing glycoconjugates were evidenced in considerable amounts in all isolates; however, the surface expression of sialic acid was poorly detected. Cd isolates presented significantly higher amounts of chitin than Ch and Chv. Membrane sterol and lipid bodies, containing neutral lipids, were quite similar among all fungi studied. All isolates adhered to inert surfaces in the order: polystyrene > poly-L-lysine-coated glass > glass. Likewise, they interacted with murine macrophages in a quite similar way. Regarding in vivo virulence, the C. haemulonii species complex were able to kill at least 80% of the larvae after 120 hours. Our results evidenced the ability of C. haemulonii complex to produce potential surface-related virulence attributes, key components that actively participate in the infection process described in Candida spp.


Assuntos
Adesividade/efeitos dos fármacos , Antifúngicos/uso terapêutico , Candida/isolamento & purificação , Candidíase/tratamento farmacológico , Candidíase/fisiopatologia , Farmacorresistência Fúngica Múltipla/efeitos dos fármacos , Virulência/efeitos dos fármacos , Arthrodermataceae/isolamento & purificação , Brasil , Humanos , Macrófagos/efeitos dos fármacos , Esporos Fúngicos/ultraestrutura
5.
Med Mycol ; 57(8): 1024-1037, 2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30753649

RESUMO

Candida parapsilosis sensu stricto (C. parapsilosis) has emerged as the second/third commonest Candida species isolated from hospitals worldwide. Candida spp. possess numerous virulence attributes, including peptidases that play multiple roles in both physiological and pathological events. So, fungal peptidases are valid targets for new drugs development. With this premise in mind, we have evaluated the effect of serine peptidase inhibitors (SPIs) on both cell biology and virulence aspects of C. parapsilosis. First, five different SPIs, phenylmethylsulfonyl fluoride, benzamidine, 4-(2-aminoethyl) benzenesulfonyl fluoride hydrochloride, N-α-tosyl-L-lysine chloromethyl ketone hydrochloride, and N-tosyl-L-phenylalanine chloromethyl ketone (TPCK) were tested, and TPCK showed the best efficacy to arrest fungal growth. Subsequently, the ability of TPCK to modulate physiopathological processes was investigated. Overall, TPCK was able to (i) inhibit the cell-associated serine peptidase activities, (ii) promote morphometric and ultrastructural alterations, (iii) induce an increase in the intracellular oxidation level, which culminates in a vigorous lipid peroxidation and accumulation of neutral lipids in cytoplasmic inclusions, (iv) modulate the expression/exposition of surface structures, such as mannose/glucose-rich glycoconjugates, N-acetylglucosamine-containing molecules, chitin, polypeptides and surface aspartic peptidases, (v) reduce the adhesion to either polystyrene or glass surfaces as well as to partially disarticulate the mature biofilm, (vi) block the fungal interaction with macrophages, and (vii) protect Galleria mellonella from fungal infection, enhancing larvae survivability. Altogether, these results demonstrated that TPCK induced several changes over fungal biology besides the interference with aspects associated to C. parapsilosis virulence and pathogenesis, which indicates that SPIs could be novel promising therapeutic agents in dealing with candidiasis.


Assuntos
Antifúngicos/farmacologia , Candida parapsilosis/efeitos dos fármacos , Candidíase/prevenção & controle , Inibidores de Serina Proteinase/farmacologia , Tosilfenilalanil Clorometil Cetona/farmacologia , Animais , Antifúngicos/administração & dosagem , Candida parapsilosis/citologia , Candida parapsilosis/crescimento & desenvolvimento , Adesão Celular/efeitos dos fármacos , Modelos Animais de Doenças , Larva/microbiologia , Lepidópteros/microbiologia , Estresse Oxidativo , Inibidores de Serina Proteinase/administração & dosagem , Análise de Sobrevida , Tosilfenilalanil Clorometil Cetona/administração & dosagem , Resultado do Tratamento , Virulência/efeitos dos fármacos
6.
Parasitol Res ; 117(9): 2795-2805, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29934691

RESUMO

We have previously shown that metallocomplexes can control the growth of Toxoplasma gondii, the agent that causes toxoplasmosis. In order to develop new metallodrugs to treat this disease, we investigated the influence of the coordination of sulfadiazine (SDZ), a drug used to treat toxoplasmosis, on the biological activity of the iron(III) complex [Fe(HBPClNOL)Cl2]·H2O, 1, (H2BPClNOL=N-(2-hydroxybenzyl)-N-(2-pyridylmethyl)(3-chloro)(2-hydroxy)-propylamine). The new complex [(Cl)(SDZ)Fe(III)(µ-BPClNOL)2Fe(III)(SDZ)(Cl)]·2H2O, 2, which was obtained by the reaction between complex 1 and SDZ, was characterized using a range of physico-chemical techniques. The cytotoxic effect of the complexes and the ability of T. gondii to infect LLC-MK2 cells were assessed. It was found that both complexes reduced the growth of T. gondii while also causing low cytotoxicity in the host cells. After 48 h of treatment, complex 2 reduced the parasite's ability to proliferate by about 50% with an IC50 of 1.66 µmol/L. Meanwhile, complex 1 or SDZ alone caused a 40% reduction in proliferation, and SDZ displayed an IC50 of 5.3 µmol/L. In addition, complex 2 treatment induced distinct morphological and ultrastructural changes in the parasites and triggered the formation of cyst-like forms. These results show that the coordination of SDZ to the iron(III) complex is a good strategy for increasing the anti-toxoplasma activity of these compounds.


Assuntos
Proliferação de Células/efeitos dos fármacos , Ferro/farmacologia , Sulfadiazina/farmacologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasmose/tratamento farmacológico , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Macaca mulatta , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Toxoplasma/efeitos dos fármacos , Toxoplasmose/parasitologia
7.
Virulence ; 9(1): 818-836, 2018 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-29560793

RESUMO

Acanthamoeba castellanii (Ac) are ubiquitously distributed in nature, and by contaminating medical devices such as heart valves and contact lenses, they cause a broad range of clinical presentations to humans. Although several molecules have been described to play a role in Ac pathogenesis, including parasite host-tissue invasion and escaping of host-defense, little information is available on their mechanisms of secretion. Herein, we describe the molecular components secreted by Ac, under different protein availability conditions to simulate host niches. Ac extracellular vesicles (EVs) were morphologically and biochemically characterized. Dynamic light scattering analysis of Ac EVs identified polydisperse populations, which correlated to electron microscopy measurements. High-performance thin liquid chromatography of Ac EVs identified phospholipids, steryl-esters, sterol and free-fatty acid, the last two also characterized by GC-MS. Secretome composition (EVs and EVs-free supernatants) was also determined and proteins biological functions classified. In peptone-yeast-glucose (PYG) medium, a total of 179 proteins were identified (21 common proteins, 89 exclusive of EVs and 69 in EVs-free supernatant). In glucose alone, 205 proteins were identified (134 in EVs, 14 common and 57 proteins in EVs-free supernatant). From those, stress response, oxidative and protein and amino acid metabolism proteins prevailed. Qualitative differences were observed on carbohydrate metabolism enzymes from Krebs cycle and pentose phosphate shunt. Serine proteases and metalloproteinases predominated. Analysis of the cytotoxicity of Ac EVs (upon uptake) and EVs-free supernatant to epithelial and glioblastoma cells revealed a dose-dependent effect. Therefore, the Ac secretome differs depending on nutrient conditions, and is also likely to vary during infection.


Assuntos
Acanthamoeba castellanii/metabolismo , Amebíase/parasitologia , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo , Proteínas de Protozoários/metabolismo , Acanthamoeba castellanii/genética , Animais , Linhagem Celular , Vesículas Extracelulares/genética , Homeostase , Humanos , Transporte Proteico , Proteoma/genética , Proteômica , Proteínas de Protozoários/genética , Via Secretória
8.
Nat Prod Res ; 32(11): 1365-1368, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28669243

RESUMO

Ethanol extracts obtained from Schinus terebinthifolius Raddi fruits and leaves were active against Escherichia coli with MIC of 78 µg mL-1 for both extracts. Phytochemical analyses revealed a major presence of phenolic acids, tannins, fatty acids and acid triterpenes in the leaves and phenolic acids, fatty acids, acid triterpenes and biflavonoids in the fruits. Major compounds isolated from the plant, such as the acid triterpene schinol, the phenolic acid derivative ethyl gallate and the biflavonoids agathisflavone and tetrahydroamentoflavone, showed very little activity against E. coli. Bioautography of the ethanol extracts on silica gel plate showed inhibition zones for E. coli. They were removed from the plate and the compounds identified as a mixture of myristic, pentadecanoic, palmitic, heptadecanoic, stearic, nonadecanoic, eicosanoic, heneicosanoic and behenic fatty acids.


Assuntos
Anacardiaceae/química , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Extratos Vegetais/farmacologia , Antibacterianos/química , Biflavonoides/isolamento & purificação , Biflavonoides/farmacologia , Frutas/química , Ácido Gálico/análogos & derivados , Ácido Gálico/isolamento & purificação , Ácido Gálico/farmacologia , Testes de Sensibilidade Microbiana , Extratos Vegetais/análise , Extratos Vegetais/química , Folhas de Planta/química , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
9.
Int J Antimicrob Agents ; 48(4): 440-4, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27499433

RESUMO

There is a general lack of effective and non-toxic chemotherapeutic agents against Chagas' disease despite more than a century of research. In this regard, we have verified the impact of human immunodeficiency virus aspartic peptidase inhibitors (HIV-PIs) on the viability and morphology of infective trypomastigote forms of Trypanosoma cruzi as well as on the aspartic peptidase and proteasome activities produced by this parasite. The effects of HIV-PIs on viability were assessed by counting motile parasites in a Neubauer chamber. Morphological alterations were detected by light microscopy of Giemsa-stained smears and scanning electron microscopy. Modulation of aspartic peptidase and proteasome activities by the HIV-PIs was measured by cleavage of fluorogenic peptide substrates. The majority of the HIV-PIs (6/9) were able to drastically decrease the viability of trypomastigotes after 4 h of treatment, with nelfinavir and lopinavir being the most effective compounds presenting LD50 values of 8.6 µM and 10.6 µM, respectively. Additionally, both HIV-PIs were demonstrated to be effective in a time- and cell density-dependent manner. Treatment with nelfinavir and lopinavir caused many morphological/ultrastructural alterations in trypomastigotes; parasites became round in shape, with reduced cell size and flagellar shortening. Nelfinavir and lopinavir were also capable of significantly inhibiting the aspartic peptidase and proteasome activities measured in trypomastigote extracts. These results strengthen the data on the positive effects of HIV-PIs on parasitic infections, possibly by targeting the parasite aspartic peptidase(s) and proteasome(s), opening a new possibility for the use of these clinically approved drugs as an alternative chemotherapy to treat Chagas' disease.


Assuntos
Antiprotozoários/farmacologia , Inibidores da Protease de HIV/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Tripanossomíase/parasitologia , Sobrevivência Celular/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Microscopia , Trypanosoma cruzi/citologia , Trypanosoma cruzi/fisiologia , Tripanossomíase/tratamento farmacológico
10.
Biofouling ; 32(7): 737-49, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27309801

RESUMO

Reported herein is the ability of Scedosporium apiospermum, S. aurantiacum, S. minutisporum and Lomentospora prolificans conidia to adhere, differentiate into hyphae and form biofilms on both polystyrene and lung epithelial cells. To different degrees, all of the fungi adhered to polystyrene after 4 h, with a predominance of those with germinated conidia. Prolonged fungi-polystyrene contact resulted in the formation of a monolayer of intertwined mycelia, which was identified as a typical biofilm structure due to the presence of a viable mycelial biomass, extracellular matrix and enhanced antifungal resistance. Ultrastructural details were revealed by SEM and CLSM, showing the dense compaction of the mycelial biomass and the presence of channels within the organized biofilm. A similar biofilm structure was observed following the co-culture of each fungus with A549 cells, revealing a mycelial trap covering all of the lung epithelial monolayer. Collectively, these results highlight the potential for biofilm formation by these clinically relevant fungal pathogens.


Assuntos
Ascomicetos/fisiologia , Biofilmes/crescimento & desenvolvimento , Células Epiteliais/microbiologia , Hifas/crescimento & desenvolvimento , Poliestirenos , Scedosporium/fisiologia , Células A549 , Ascomicetos/ultraestrutura , Aderência Bacteriana , Biomassa , Humanos , Microscopia Confocal , Microscopia Eletrônica de Varredura , Poliestirenos/química , Scedosporium/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA