Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Am Coll Surg ; 228(1): 107-115, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30359833

RESUMO

BACKGROUND: Diabetic wounds have become one of the most challenging public health issues of the 21st century, yet there is no effective treatment available. We have previously shown that the diabetic wound healing impairment is associated with increased inflammation and decreased expression of the regulatory microRNA miR-146a. We have conjugated miR-146a to cerium oxide nanoparticles (CNP-miR146a) to target reactive oxygen species (ROS) and inflammation. This study aimed to evaluate the consequences of CNP-miR146a treatment of diabetic wounds. STUDY DESIGN: Eight-millimeter wounds were created on the dorsal skin of Db/Db mice and treated with PBS or differing concentrations of CNP-mir146a (1; 10; 100; or 1,000 ng) at the time of wounding. Rate of wound closure was measured until the wounds were fully healed. At 4 weeks post-healing, a dumbbell-shaped skin sample was collected, with the healed wound in the center, and an Instron 5942 testing unit was used to measure the maximum load and modulus. RESULTS: Our data showed that diabetic wounds treated with PBS or 1 ng CNP-miR146a took 18 days to heal. Treatment with 10, 100, or 1,000 ng of CNP+miR-146a effectively enhanced healing, and wounds were fully closed at day 14 post-wounding. The healed skin from the CNP-miR146a-treated group showed a trend of improved biomechanical properties (increased maximum load and modulus), however it did not reach significance. CONCLUSIONS: We found that a 100-ng dose of CNP-miR146a improved diabetic wound healing and did not impair the biomechanical properties of the skin post-healing. This nanotechnology-based therapy is promising, and future studies are warranted to transfer this therapy to clinical application.


Assuntos
Cério/farmacologia , Complicações do Diabetes/terapia , MicroRNAs/farmacologia , Nanopartículas/química , Cicatrização/efeitos dos fármacos , Ferimentos Penetrantes/terapia , Animais , Modelos Animais de Doenças , Feminino , Camundongos
2.
Nanomedicine ; 12(2): 399-409, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26711960

RESUMO

Safety concerns and/or the stochastic nature of current transduction approaches have hampered nuclear reprogramming's clinical translation. We report a novel non-viral nanotechnology-based platform permitting deterministic large-scale transfection with single-cell resolution. The superior capabilities of our technology are demonstrated by modification of the well-established direct neuronal reprogramming paradigm using overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM). Reprogramming efficiencies were comparable to viral methodologies (up to ~9-12%) without the constraints of capsid size and with the ability to control plasmid dosage, in addition to showing superior performance relative to existing non-viral methods. Furthermore, increased neuronal complexity could be tailored by varying BAM ratio and by including additional proneural genes to the BAM cocktail. Furthermore, high-throughput NEP allowed easy interrogation of the reprogramming process. We discovered that BAM-mediated reprogramming is regulated by AsclI dosage, the S-phase cyclin CCNA2, and that some induced neurons passed through a nestin-positive cell stage. FROM THE CLINICAL EDITOR: In the field of regenerative medicine, the ability to direct cell fate by nuclear reprogramming is an important facet in terms of clinical application. In this article, the authors described their novel technique of cell reprogramming through overexpression of the transcription factors Brn2, Ascl1, and Myt1l (BAM) by in situ electroporation through nanochannels. This new technique could provide a platform for further future designs.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Reprogramação Celular , Proteínas de Ligação a DNA/genética , DNA/administração & dosagem , Proteínas do Tecido Nervoso/genética , Neurônios/citologia , Fatores do Domínio POU/genética , Fatores de Transcrição/genética , Transfecção/métodos , Animais , Linhagem Celular , DNA/genética , Eletroporação/métodos , Fibroblastos/citologia , Fibroblastos/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Plasmídeos/administração & dosagem , Plasmídeos/genética , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA